Bioluminescence Tomography-Guided Radiation Therapy for Preclinical Research

Bin Zhang, Ken Kang Hsin Wang, Jingjing Yu, Sohrab Eslami, Iulian Iordachita, Juvenal Reyes, Reem Malek, Phuoc T. Tran, Michael S. Patterson, John W. Wong

Research output: Contribution to journalArticlepeer-review

24 Scopus citations

Abstract

Purpose In preclinical radiation research, it is challenging to localize soft tissue targets based on cone beam computed tomography (CBCT) guidance. As a more effective method to localize soft tissue targets, we developed an online bioluminescence tomography (BLT) system for small-animal radiation research platform (SARRP). We demonstrated BLT-guided radiation therapy and validated targeting accuracy based on a newly developed reconstruction algorithm. Methods and Materials The BLT system was designed to dock with the SARRP for image acquisition and to be detached before radiation delivery. A 3-mirror system was devised to reflect the bioluminescence emitted from the subject to a stationary charge-coupled device (CCD) camera. Multispectral BLT and the incomplete variables truncated conjugate gradient method with a permissible region shrinking strategy were used as the optimization scheme to reconstruct bioluminescent source distributions. To validate BLT targeting accuracy, a small cylindrical light source with high CBCT contrast was placed in a phantom and also in the abdomen of a mouse carcass. The center of mass (CoM) of the source was recovered from BLT and used to guide radiation delivery. The accuracy of the BLT-guided targeting was validated with films and compared with the CBCT-guided delivery. In vivo experiments were conducted to demonstrate BLT localization capability for various source geometries. Results Online BLT was able to recover the CoM of the embedded light source with an average accuracy of 1 mm compared to that with CBCT localization. Differences between BLT- and CBCT-guided irradiation shown on the films were consistent with the source localization revealed in the BLT and CBCT images. In vivo results demonstrated that our BLT system could potentially be applied for multiple targets and tumors. Conclusions The online BLT/CBCT/SARRP system provides an effective solution for soft tissue targeting, particularly for small, nonpalpable, or orthotopic tumor models.

Original languageEnglish (US)
Pages (from-to)1144-1153
Number of pages10
JournalInternational Journal of Radiation Oncology Biology Physics
Volume94
Issue number5
DOIs
StatePublished - Apr 1 2016

ASJC Scopus subject areas

  • Radiation
  • Oncology
  • Radiology Nuclear Medicine and imaging
  • Cancer Research

Fingerprint

Dive into the research topics of 'Bioluminescence Tomography-Guided Radiation Therapy for Preclinical Research'. Together they form a unique fingerprint.

Cite this