Bioaccumulation, retention, and depuration of enteric viruses by Crassostrea virginica and Crassostrea ariakensis oysters

Sharon P. Nappier, Thaddeus K. Graczyk, Kellogg J. Schwab

Research output: Contribution to journalArticlepeer-review

72 Scopus citations

Abstract

Crassostrea ariakensis oysters are under review for introduction into the Chesapeake Bay. However, the human health implications of the introduction have not been fully addressed. This study evaluated rates of bioaccumulation, retention, and depuration of viruses by Crassostrea virginica and C. ariakensis when the two oyster species were maintained in separate tanks containing synthetic seawater of various salinities (8, 12, or 20 ppt). Oyster bioaccumulation tanks were seeded with 103 PFU/ml of hepatitis A virus (HAV), poliovirus, male-specific bacteriophage (MS2), and murine norovirus 1 (MNV-1) and 103 PCR units/ml of human norovirus (NoV). After 24 h, depuration commenced as oysters (n ∇ 255) were placed in pathogen-free seawater under continuous filtration. Oysters (n = 6) were sampled weekly for 1 month from each tank. Viral RNA was recovered using a modified proteinase K, guanidine, and glassmilk method and analyzed by quantitative reverse transcription-PCR. The odds of C. ariakensis oysters harboring NoV, MNV-1, or HAV were statistically greater than the odds of C. virginica oysters harboring the same viruses (MNV-1 odds ratio [OR], 4.5; P = 0.01; NoV OR, 8.4; P < 0.001; HAV OR, 11.4; P < 0.001). Unlike C. virginica, C. ariakensis bioaccumulated and retained NoV, MNV-1, and HAV for 1 month at all salinities. Additionally, the odds of an oyster testing positive for NoV was 25.5 times greater (P < 0.001) when the oyster also tested positive for MNV-1. This research helps assess the threat of C. ariakensis as a vehicle for viral pathogens due to the consumption of raw oysters and validates the role for MNV-1 as a surrogate for NoV.

Original languageEnglish (US)
Pages (from-to)6825-6831
Number of pages7
JournalApplied and environmental microbiology
Volume74
Issue number22
DOIs
StatePublished - Nov 2008

ASJC Scopus subject areas

  • Biotechnology
  • Food Science
  • Applied Microbiology and Biotechnology
  • Ecology

Fingerprint

Dive into the research topics of 'Bioaccumulation, retention, and depuration of enteric viruses by Crassostrea virginica and Crassostrea ariakensis oysters'. Together they form a unique fingerprint.

Cite this