Binding of EBNA-1 to DNA creates a protease-resistant domain that encompasses the DNA recognition and dimerization functions

Waris A. Shah, Richard F. Ambinder, Gary S. Hayward, S. Diane Hayward

Research output: Contribution to journalArticlepeer-review

28 Scopus citations

Abstract

The Epstein-Barr virus nuclear antigen EBNA-1 is essential for replication of the viral DNA during latency. EBNA-1 binds as a dimer to palindromic recognition sequences within the plasmid origin of replication, ori-P. In this study, proteinase K susceptibility has been used to further characterize the DNA-binding domain of EBNA-1. Limited protease digestion of EBNA-1 (amino acids 408 to 641) generated a smaller DNA-binding species that had a degree of inherent protease resistance. When EBNA-1 was preincubated with a specific DNA probe, the protease resistance of the smaller binding species increased 100-fold, suggesting that the conformation of EBNA-1 changes on binding. The protease-resistant species comprised an 18-kDa polypeptide that was further cleaved at high levels of protease to 11- and 5.4-kDa products. A model of the proposed protease-resistant domain structure is presented. Constructions carrying serial, internal deletions across the 18-kDa domain were created. Each of the deletions perturbed dimerization ability and abolished DNA binding. These studies suggest that the DNA-binding and dimerization motifs of EBNA-1 lie within a conformationally discrete domain whose overall integrity is necessary for EBNA-1-DNA interaction.

Original languageEnglish (US)
Pages (from-to)3355-3362
Number of pages8
JournalJournal of virology
Volume66
Issue number6
StatePublished - Jun 1992

ASJC Scopus subject areas

  • Microbiology
  • Immunology
  • Insect Science
  • Virology

Fingerprint

Dive into the research topics of 'Binding of EBNA-1 to DNA creates a protease-resistant domain that encompasses the DNA recognition and dimerization functions'. Together they form a unique fingerprint.

Cite this