Avidin-dendrimer-(1B4M-Gd)254: A tumor-targeting therapeutic agent for gadolinium neutron capture therapy of intraperitoneal disseminated tumor which can be monitored by MRI

H. Kobayashi, Satomi Kawamoto, T. Saga, N. Sato, T. Ishimori, J. Konishi, K. Ono, K. Togashi, M. W. Brechbiel

Research output: Contribution to journalArticle

Abstract

Peritoneal carcinomatosis is a late stage in cancer progress, for which no effective therapeutic modality exists. Targeting therapeutic agents to disseminated lesions may be a promising modality for treating peritoneal carcinomatosis. Gadolinium (157,155Gd) is known to generate Auger and internal conversion electrons efficiently by irradiation with a neutron beam. Auger electrons from neutron-activated Gd(III) are strongly cytotoxic, but only when Gd(III) atoms have been internalized into the cells. In the present investigation, we have developed a quickly internalizing tumor-targeting system to deliver large quantities of Gd(III) atoms into tumor cells to generate the Auger emission with an external neutron beam. Simultaneously, one would be able to image its biodistribution by MRI with a shortened T1 relaxation time. Avidin-G6-(1B4M-Gd)254 (Av-G6Gd) was synthesized from generation-6 polyamidoamine dendrimer, biotin, avidin, and 2-(p-isothiocyanatobenzyl)-6-methyl-diethylenetriaminepentaacetic acid (1B4M). The Av-G6Gd was radiolabeled with Gd(III) doped with 153Gd. All of the 1B4M's on the conjugate were fully saturated with Gd(III) atoms. An in vitro internalization study showed that Av-G6Gd accumulated and was internalized into SHIN3 cells (a human ovarian cancer) 50- and 3.5-fold greater than Gd-DTPA (Magnevist) and G6-(1B4M-Gd)256 (G6Gd). In addition, accumulation of Gd(III) in the cells was detected by the increased signal on T1-weighted MRI. A biodistribution study was performed in nude mice bearing intraperitoneally disseminated SHIN3 tumors. Av-G6Gd showed specific accumulation in the SHIN3 tumor (103% ID/g) 366- and 3.4-fold greater than Gd-DTPA (0.28% ID/g, p <0.001) and G6Gd (30% ID/g, p <0.001) 1 day after i.p. injection. Seventy-eight percent of the tumor-related radioactivity of Av-G6Gd in the SHIN3 tumor was located inside the cells. The SHIN3 tumor-to-normal tissue ratio was greater than 17:1 in all organs and increased up to 638:1 at 1 day after i.p. injection. In conclusion, a sufficient amount (162 ppm) of Av-G6Gd was accumulated and internalized into the SHIN3 cells both in vitro and in vivo to kill the cell using 157/155Gd with external irradiation with an appropriate neutron beam while monitoring with MRI. Thus, Av-G6Gd may be a promising agent for Gd neutron capture therapy of peritoneal carcinomatosis. This reagent also has the potential to permit monitoring of its pharmacokinetic progress with MRI.

Original languageEnglish (US)
Pages (from-to)587-593
Number of pages7
JournalBioconjugate Chemistry
Volume12
Issue number4
DOIs
StatePublished - 2001
Externally publishedYes

Fingerprint

Neutron Capture Therapy
Gadolinium DTPA
Dendrimers
Gadolinium
Magnetic resonance imaging
Tumors
Neutrons
Neutron beams
Neoplasms
Atoms
Therapeutics
Bearings (structural)
Avidin
Irradiation
Carcinoma
Pharmacokinetics
Electrons
Monitoring
Radioactivity
avidin-dendrimer-(1B4M-Gd)(254)

ASJC Scopus subject areas

  • Chemistry(all)
  • Organic Chemistry
  • Clinical Biochemistry
  • Biochemistry, Genetics and Molecular Biology(all)
  • Biochemistry

Cite this

Avidin-dendrimer-(1B4M-Gd)254 : A tumor-targeting therapeutic agent for gadolinium neutron capture therapy of intraperitoneal disseminated tumor which can be monitored by MRI. / Kobayashi, H.; Kawamoto, Satomi; Saga, T.; Sato, N.; Ishimori, T.; Konishi, J.; Ono, K.; Togashi, K.; Brechbiel, M. W.

In: Bioconjugate Chemistry, Vol. 12, No. 4, 2001, p. 587-593.

Research output: Contribution to journalArticle

Kobayashi, H. ; Kawamoto, Satomi ; Saga, T. ; Sato, N. ; Ishimori, T. ; Konishi, J. ; Ono, K. ; Togashi, K. ; Brechbiel, M. W. / Avidin-dendrimer-(1B4M-Gd)254 : A tumor-targeting therapeutic agent for gadolinium neutron capture therapy of intraperitoneal disseminated tumor which can be monitored by MRI. In: Bioconjugate Chemistry. 2001 ; Vol. 12, No. 4. pp. 587-593.
@article{821c3d19189d43ef9d10bbdb7ed78616,
title = "Avidin-dendrimer-(1B4M-Gd)254: A tumor-targeting therapeutic agent for gadolinium neutron capture therapy of intraperitoneal disseminated tumor which can be monitored by MRI",
abstract = "Peritoneal carcinomatosis is a late stage in cancer progress, for which no effective therapeutic modality exists. Targeting therapeutic agents to disseminated lesions may be a promising modality for treating peritoneal carcinomatosis. Gadolinium (157,155Gd) is known to generate Auger and internal conversion electrons efficiently by irradiation with a neutron beam. Auger electrons from neutron-activated Gd(III) are strongly cytotoxic, but only when Gd(III) atoms have been internalized into the cells. In the present investigation, we have developed a quickly internalizing tumor-targeting system to deliver large quantities of Gd(III) atoms into tumor cells to generate the Auger emission with an external neutron beam. Simultaneously, one would be able to image its biodistribution by MRI with a shortened T1 relaxation time. Avidin-G6-(1B4M-Gd)254 (Av-G6Gd) was synthesized from generation-6 polyamidoamine dendrimer, biotin, avidin, and 2-(p-isothiocyanatobenzyl)-6-methyl-diethylenetriaminepentaacetic acid (1B4M). The Av-G6Gd was radiolabeled with Gd(III) doped with 153Gd. All of the 1B4M's on the conjugate were fully saturated with Gd(III) atoms. An in vitro internalization study showed that Av-G6Gd accumulated and was internalized into SHIN3 cells (a human ovarian cancer) 50- and 3.5-fold greater than Gd-DTPA (Magnevist) and G6-(1B4M-Gd)256 (G6Gd). In addition, accumulation of Gd(III) in the cells was detected by the increased signal on T1-weighted MRI. A biodistribution study was performed in nude mice bearing intraperitoneally disseminated SHIN3 tumors. Av-G6Gd showed specific accumulation in the SHIN3 tumor (103{\%} ID/g) 366- and 3.4-fold greater than Gd-DTPA (0.28{\%} ID/g, p <0.001) and G6Gd (30{\%} ID/g, p <0.001) 1 day after i.p. injection. Seventy-eight percent of the tumor-related radioactivity of Av-G6Gd in the SHIN3 tumor was located inside the cells. The SHIN3 tumor-to-normal tissue ratio was greater than 17:1 in all organs and increased up to 638:1 at 1 day after i.p. injection. In conclusion, a sufficient amount (162 ppm) of Av-G6Gd was accumulated and internalized into the SHIN3 cells both in vitro and in vivo to kill the cell using 157/155Gd with external irradiation with an appropriate neutron beam while monitoring with MRI. Thus, Av-G6Gd may be a promising agent for Gd neutron capture therapy of peritoneal carcinomatosis. This reagent also has the potential to permit monitoring of its pharmacokinetic progress with MRI.",
author = "H. Kobayashi and Satomi Kawamoto and T. Saga and N. Sato and T. Ishimori and J. Konishi and K. Ono and K. Togashi and Brechbiel, {M. W.}",
year = "2001",
doi = "10.1021/bc010002o",
language = "English (US)",
volume = "12",
pages = "587--593",
journal = "Bioconjugate Chemistry",
issn = "1043-1802",
publisher = "American Chemical Society",
number = "4",

}

TY - JOUR

T1 - Avidin-dendrimer-(1B4M-Gd)254

T2 - A tumor-targeting therapeutic agent for gadolinium neutron capture therapy of intraperitoneal disseminated tumor which can be monitored by MRI

AU - Kobayashi, H.

AU - Kawamoto, Satomi

AU - Saga, T.

AU - Sato, N.

AU - Ishimori, T.

AU - Konishi, J.

AU - Ono, K.

AU - Togashi, K.

AU - Brechbiel, M. W.

PY - 2001

Y1 - 2001

N2 - Peritoneal carcinomatosis is a late stage in cancer progress, for which no effective therapeutic modality exists. Targeting therapeutic agents to disseminated lesions may be a promising modality for treating peritoneal carcinomatosis. Gadolinium (157,155Gd) is known to generate Auger and internal conversion electrons efficiently by irradiation with a neutron beam. Auger electrons from neutron-activated Gd(III) are strongly cytotoxic, but only when Gd(III) atoms have been internalized into the cells. In the present investigation, we have developed a quickly internalizing tumor-targeting system to deliver large quantities of Gd(III) atoms into tumor cells to generate the Auger emission with an external neutron beam. Simultaneously, one would be able to image its biodistribution by MRI with a shortened T1 relaxation time. Avidin-G6-(1B4M-Gd)254 (Av-G6Gd) was synthesized from generation-6 polyamidoamine dendrimer, biotin, avidin, and 2-(p-isothiocyanatobenzyl)-6-methyl-diethylenetriaminepentaacetic acid (1B4M). The Av-G6Gd was radiolabeled with Gd(III) doped with 153Gd. All of the 1B4M's on the conjugate were fully saturated with Gd(III) atoms. An in vitro internalization study showed that Av-G6Gd accumulated and was internalized into SHIN3 cells (a human ovarian cancer) 50- and 3.5-fold greater than Gd-DTPA (Magnevist) and G6-(1B4M-Gd)256 (G6Gd). In addition, accumulation of Gd(III) in the cells was detected by the increased signal on T1-weighted MRI. A biodistribution study was performed in nude mice bearing intraperitoneally disseminated SHIN3 tumors. Av-G6Gd showed specific accumulation in the SHIN3 tumor (103% ID/g) 366- and 3.4-fold greater than Gd-DTPA (0.28% ID/g, p <0.001) and G6Gd (30% ID/g, p <0.001) 1 day after i.p. injection. Seventy-eight percent of the tumor-related radioactivity of Av-G6Gd in the SHIN3 tumor was located inside the cells. The SHIN3 tumor-to-normal tissue ratio was greater than 17:1 in all organs and increased up to 638:1 at 1 day after i.p. injection. In conclusion, a sufficient amount (162 ppm) of Av-G6Gd was accumulated and internalized into the SHIN3 cells both in vitro and in vivo to kill the cell using 157/155Gd with external irradiation with an appropriate neutron beam while monitoring with MRI. Thus, Av-G6Gd may be a promising agent for Gd neutron capture therapy of peritoneal carcinomatosis. This reagent also has the potential to permit monitoring of its pharmacokinetic progress with MRI.

AB - Peritoneal carcinomatosis is a late stage in cancer progress, for which no effective therapeutic modality exists. Targeting therapeutic agents to disseminated lesions may be a promising modality for treating peritoneal carcinomatosis. Gadolinium (157,155Gd) is known to generate Auger and internal conversion electrons efficiently by irradiation with a neutron beam. Auger electrons from neutron-activated Gd(III) are strongly cytotoxic, but only when Gd(III) atoms have been internalized into the cells. In the present investigation, we have developed a quickly internalizing tumor-targeting system to deliver large quantities of Gd(III) atoms into tumor cells to generate the Auger emission with an external neutron beam. Simultaneously, one would be able to image its biodistribution by MRI with a shortened T1 relaxation time. Avidin-G6-(1B4M-Gd)254 (Av-G6Gd) was synthesized from generation-6 polyamidoamine dendrimer, biotin, avidin, and 2-(p-isothiocyanatobenzyl)-6-methyl-diethylenetriaminepentaacetic acid (1B4M). The Av-G6Gd was radiolabeled with Gd(III) doped with 153Gd. All of the 1B4M's on the conjugate were fully saturated with Gd(III) atoms. An in vitro internalization study showed that Av-G6Gd accumulated and was internalized into SHIN3 cells (a human ovarian cancer) 50- and 3.5-fold greater than Gd-DTPA (Magnevist) and G6-(1B4M-Gd)256 (G6Gd). In addition, accumulation of Gd(III) in the cells was detected by the increased signal on T1-weighted MRI. A biodistribution study was performed in nude mice bearing intraperitoneally disseminated SHIN3 tumors. Av-G6Gd showed specific accumulation in the SHIN3 tumor (103% ID/g) 366- and 3.4-fold greater than Gd-DTPA (0.28% ID/g, p <0.001) and G6Gd (30% ID/g, p <0.001) 1 day after i.p. injection. Seventy-eight percent of the tumor-related radioactivity of Av-G6Gd in the SHIN3 tumor was located inside the cells. The SHIN3 tumor-to-normal tissue ratio was greater than 17:1 in all organs and increased up to 638:1 at 1 day after i.p. injection. In conclusion, a sufficient amount (162 ppm) of Av-G6Gd was accumulated and internalized into the SHIN3 cells both in vitro and in vivo to kill the cell using 157/155Gd with external irradiation with an appropriate neutron beam while monitoring with MRI. Thus, Av-G6Gd may be a promising agent for Gd neutron capture therapy of peritoneal carcinomatosis. This reagent also has the potential to permit monitoring of its pharmacokinetic progress with MRI.

UR - http://www.scopus.com/inward/record.url?scp=0034924638&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0034924638&partnerID=8YFLogxK

U2 - 10.1021/bc010002o

DO - 10.1021/bc010002o

M3 - Article

C2 - 11459464

AN - SCOPUS:0034924638

VL - 12

SP - 587

EP - 593

JO - Bioconjugate Chemistry

JF - Bioconjugate Chemistry

SN - 1043-1802

IS - 4

ER -