Automatic sulcal curve extraction with MRF based shape prior

Zhen Yang, Aaron Carass, Jerry L. Prince

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Extracting and labeling sulcal curves on the human cerebral cortex is important for many neuroscience studies, however manually annotating the sulcal curves is a time-consuming task. In this paper, we present an automatic sulcal curve extraction method by registering a set of dense landmark points representing the sulcal curves to the subject cortical surface. A Markov random field is used to model the prior distribution of these landmark points, with short edges in the graph preserving the curve structure and long edges modeling the global context of the curves. Our approach is validated using a leave-one-out strategy of training and evaluation on fifteen cortical surfaces, and a quantitative error analysis on the extracted major sulcal curves.

Original languageEnglish (US)
Title of host publication2012 9th IEEE International Symposium on Biomedical Imaging
Subtitle of host publicationFrom Nano to Macro, ISBI 2012 - Proceedings
Pages418-421
Number of pages4
DOIs
StatePublished - 2012
Event2012 9th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2012 - Barcelona, Spain
Duration: May 2 2012May 5 2012

Publication series

NameProceedings - International Symposium on Biomedical Imaging
ISSN (Print)1945-7928
ISSN (Electronic)1945-8452

Other

Other2012 9th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2012
Country/TerritorySpain
CityBarcelona
Period5/2/125/5/12

Keywords

  • Markov random field
  • Sulcal curve extraction
  • cortical surface
  • point set registration
  • shape prior

ASJC Scopus subject areas

  • Biomedical Engineering
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Automatic sulcal curve extraction with MRF based shape prior'. Together they form a unique fingerprint.

Cite this