Automated Surgical Activity Recognition with One Labeled Sequence

Robert DiPietro, Gregory D. Hager

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Prior work has demonstrated the feasibility of automated activity recognition in robot-assisted surgery from motion data. However, these efforts have assumed the availability of a large number of densely-annotated sequences, which must be provided manually by experts. This process is tedious, expensive, and error-prone. In this paper, we present the first analysis under the assumption of scarce annotations, where as little as one annotated sequence is available for training. We demonstrate feasibility of automated recognition in this challenging setting, and we show that learning representations in an unsupervised fashion, before the recognition phase, leads to significant gains in performance. In addition, our paper poses a new challenge to the community: how much further can we push performance in this important yet relatively unexplored regime?

Original languageEnglish (US)
Title of host publicationMedical Image Computing and Computer Assisted Intervention – MICCAI 2019 - 22nd International Conference, Proceedings
EditorsDinggang Shen, Pew-Thian Yap, Tianming Liu, Terry M. Peters, Ali Khan, Lawrence H. Staib, Caroline Essert, Sean Zhou
PublisherSpringer
Pages458-466
Number of pages9
ISBN (Print)9783030322533
DOIs
StatePublished - Jan 1 2019
Event22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019 - Shenzhen, China
Duration: Oct 13 2019Oct 17 2019

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume11768 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019
CountryChina
CityShenzhen
Period10/13/1910/17/19

Keywords

  • Gesture recognition
  • Maneuver recognition
  • Semi-supervised learning
  • Surgical activity recognition

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Computer Science(all)

Fingerprint Dive into the research topics of 'Automated Surgical Activity Recognition with One Labeled Sequence'. Together they form a unique fingerprint.

  • Cite this

    DiPietro, R., & Hager, G. D. (2019). Automated Surgical Activity Recognition with One Labeled Sequence. In D. Shen, P-T. Yap, T. Liu, T. M. Peters, A. Khan, L. H. Staib, C. Essert, & S. Zhou (Eds.), Medical Image Computing and Computer Assisted Intervention – MICCAI 2019 - 22nd International Conference, Proceedings (pp. 458-466). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 11768 LNCS). Springer. https://doi.org/10.1007/978-3-030-32254-0_51