TY - JOUR
T1 - Automated prediction of the Thoracolumbar Injury Classification and Severity Score from CT using a novel deep learning algorithm
AU - Doerr, Sophia A.
AU - Weber-Levine, Carly
AU - Hersh, Andrew M.
AU - Awosika, Tolulope
AU - Judy, Brendan
AU - Jin, Yike
AU - Raj, Divyaansh
AU - Liu, Ann
AU - Lubelski, Daniel
AU - Jones, Craig
AU - Sair, Haris I.
AU - Theodore, Nicholas
N1 - Publisher Copyright:
© 2022. except where prohibited by US. All Rights Reserved.
PY - 2022
Y1 - 2022
N2 - OBJECTIVE Damage to the thoracolumbar spine can confer significant morbidity and mortality. The Thoracolumbar Injury Classification and Severity Score (TLICS) is used to categorize injuries and determine patients at risk of spinal instability for whom surgical intervention is warranted. However, calculating this score can constitute a bottleneck in triaging and treating patients, as it relies on multiple imaging studies and a neurological examination. Therefore, the authors sought to develop and validate a deep learning model that can automatically categorize vertebral morphology and determine posterior ligamentous complex (PLC) integrity, two critical features of TLICS, using only CT scans. METHODS All patients who underwent neurosurgical consultation for traumatic spine injury or degenerative pathology resulting in spine injury at a single tertiary center from January 2018 to December 2019 were retrospectively evaluated for inclusion. The morphology of injury and integrity of the PLC were categorized on CT scans. A state-of-the-art object detection region-based convolutional neural network (R-CNN), Faster R-CNN, was leveraged to predict both vertebral locations and the corresponding TLICS. The network was trained with patient CT scans, manually labeled vertebral bounding boxes, TLICS morphology, and PLC annotations, thus allowing the model to output the location of vertebrae, categorize their morphology, and determine the status of PLC integrity. RESULTS A total of 111 patients were included (mean ± SD age 62 ± 20 years) with a total of 129 separate injury classifications. Vertebral localization and PLC integrity classification achieved Dice scores of 0.92 and 0.88, respectively. Binary classification between noninjured and injured morphological scores demonstrated 95.1% accuracy. TLICS morphology accuracy, the true positive rate, and positive injury mismatch classification rate were 86.3%, 76.2%, and 22.7%, respectively. Classification accuracy between no injury and suspected PLC injury was 86.8%, while true positive, false negative, and false positive rates were 90.0%, 10.0%, and 21.8%, respectively. CONCLUSIONS In this study, the authors demonstrate a novel deep learning method to automatically predict injury morphology and PLC disruption with high accuracy. This model may streamline and improve diagnostic decision support for patients with thoracolumbar spinal trauma.
AB - OBJECTIVE Damage to the thoracolumbar spine can confer significant morbidity and mortality. The Thoracolumbar Injury Classification and Severity Score (TLICS) is used to categorize injuries and determine patients at risk of spinal instability for whom surgical intervention is warranted. However, calculating this score can constitute a bottleneck in triaging and treating patients, as it relies on multiple imaging studies and a neurological examination. Therefore, the authors sought to develop and validate a deep learning model that can automatically categorize vertebral morphology and determine posterior ligamentous complex (PLC) integrity, two critical features of TLICS, using only CT scans. METHODS All patients who underwent neurosurgical consultation for traumatic spine injury or degenerative pathology resulting in spine injury at a single tertiary center from January 2018 to December 2019 were retrospectively evaluated for inclusion. The morphology of injury and integrity of the PLC were categorized on CT scans. A state-of-the-art object detection region-based convolutional neural network (R-CNN), Faster R-CNN, was leveraged to predict both vertebral locations and the corresponding TLICS. The network was trained with patient CT scans, manually labeled vertebral bounding boxes, TLICS morphology, and PLC annotations, thus allowing the model to output the location of vertebrae, categorize their morphology, and determine the status of PLC integrity. RESULTS A total of 111 patients were included (mean ± SD age 62 ± 20 years) with a total of 129 separate injury classifications. Vertebral localization and PLC integrity classification achieved Dice scores of 0.92 and 0.88, respectively. Binary classification between noninjured and injured morphological scores demonstrated 95.1% accuracy. TLICS morphology accuracy, the true positive rate, and positive injury mismatch classification rate were 86.3%, 76.2%, and 22.7%, respectively. Classification accuracy between no injury and suspected PLC injury was 86.8%, while true positive, false negative, and false positive rates were 90.0%, 10.0%, and 21.8%, respectively. CONCLUSIONS In this study, the authors demonstrate a novel deep learning method to automatically predict injury morphology and PLC disruption with high accuracy. This model may streamline and improve diagnostic decision support for patients with thoracolumbar spinal trauma.
KW - TLICS
KW - Thoracolumbar Injury Classification and Severity Score
KW - injury
KW - machine learning
KW - motor vehicle crash
KW - spine
KW - trauma
UR - http://www.scopus.com/inward/record.url?scp=85127443243&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85127443243&partnerID=8YFLogxK
U2 - 10.3171/2022.1.FOCUS21745
DO - 10.3171/2022.1.FOCUS21745
M3 - Article
C2 - 35364582
AN - SCOPUS:85127443243
SN - 1092-0684
VL - 52
JO - Neurosurgical Focus
JF - Neurosurgical Focus
IS - 4
M1 - E5
ER -