Automated image analysis of instagram posts: Implications for risk perception and communication in public health using a case study of #HIV

Alicia L. Nobles, Eric C. Leas, Seth Noar, Mark Dredze, Carl A. Latkin, Steffanie A. Strathdee, John W. Ayers

Research output: Contribution to journalArticle

Abstract

People’s perceptions about health risks, including their risk of acquiring HIV, are impacted in part by who they see portrayed as at risk in the media. Viewers in these cases are asking themselves “do those portrayed as at risk look like me?” An accurate perception of risk is critical for high-risk populations, who already suffer from a range of health disparities. Yet, to date no study has evaluated the demographic representation of health-related content from social media. The objective of this case study was to apply automated image recognition software to examine the demographic profile of faces in Instagram posts containing the hashtag #HIV (obtained from January 2017 through July 2018) and compare this to the demographic breakdown of those most at risk of a new HIV diagnosis (estimates of incidence of new HIV diagnoses from the 2017 US Centers for Disease Control HIV Surveillance Report). We discovered 26,766 Instagram posts containing #HIV authored in American English with 10,036 (37.5%) containing a detectable human face with a total of 18,227 faces (mean = 1.8, standard deviation [SD] = 1.7). Faces skewed older (47% vs. 11% were 35–39 years old), more female (41% vs. 19%), more white (43% vs. 26%), less black (31% vs 44%), and less Hispanic (13% vs 25%) on Instagram than for new HIV diagnoses. The results were similarly skewed among the subset of #HIV posts mentioning pre-exposure prophylaxis (PrEP). This disparity might lead Instagram users to potentially misjudge their own HIV risk and delay prophylactic behaviors. Social media managers and organic advocates should be encouraged to share images that better reflect at-risk populations so as not to further marginalize these populations and to reduce disparity in risk perception. Replication of our methods for additional diseases, such as cancer, is warranted to discover and address other misrepresentations.

Original languageEnglish (US)
Article numbere0231155
JournalPloS one
Volume15
Issue number5
DOIs
StatePublished - May 2020

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)
  • General

Fingerprint Dive into the research topics of 'Automated image analysis of instagram posts: Implications for risk perception and communication in public health using a case study of #HIV'. Together they form a unique fingerprint.

  • Cite this