Autoinhibition and autoactivation of the DNA replication checkpoint kinase Cds1

Yong Jie Xu, Thomas Kelly

Research output: Contribution to journalArticle

Abstract

Cds1 is the ortholog of Chk2 and the major effector of the DNA replication checkpoint in Schizosaccharomyces pombe. Previous studies have shown that Cds1 is activated by a two-stage mechanism. In the priming stage, the sensor kinase Rad3 and the mediator Mrc1 function to phosphorylate a threonine residue, Thr11, in the SQ/TQ domain of Cds1. In the autoactivation stage, primed Cds1 molecules dimerize via intermolecular interactions between the phosphorylated Thr11 in one Cds1 and the forkhead-associated domain of the other. Dimerization activates Cds1, probably by promoting autophosphorylation. To define the mechanisms for the autoactivation of primed Cds1 and the regulation of this process, we carried out genetic and biochemical studies to identify phosphorylatable residues required for checkpoint activation. Our data indicate that dimerization of Cds1 promotes trans-autophosphorylation of a number of residues in the catalytic domain, but phosphorylation of a highly conserved threonine residue (Thr328) in the activation loop is the only covalent modification required for kinase activation in vitro and in vivo. Autophosphorylation of Thr328 and kinase activation in unprimed, monomeric Cds1 are strongly inhibited by the C-terminal 27-amino acid tail of the enzyme. This autoinhibitory effect may play an important role in preventing spontaneous activation of the replication checkpoint during normal cell cycles. The two-stage activation pathway and the autoinhibition mechanism, which are probably shared by other members of the Chk2 family, provide sensitivity, specificity, and noise immunity, properties required for the replication checkpoint.

Original languageEnglish (US)
Pages (from-to)16016-16027
Number of pages12
JournalJournal of Biological Chemistry
Volume284
Issue number23
DOIs
StatePublished - Jun 5 2009
Externally publishedYes

Fingerprint

DNA Replication
Phosphotransferases
Chemical activation
Dimerization
Threonine
DNA
Schizosaccharomyces
Noise
Molecular Biology
Immunity
Catalytic Domain
Cell Cycle
Phosphorylation
Amino Acids
Sensitivity and Specificity
Enzymes
Cells
Molecules
Sensors

ASJC Scopus subject areas

  • Biochemistry
  • Cell Biology
  • Molecular Biology

Cite this

Autoinhibition and autoactivation of the DNA replication checkpoint kinase Cds1. / Xu, Yong Jie; Kelly, Thomas.

In: Journal of Biological Chemistry, Vol. 284, No. 23, 05.06.2009, p. 16016-16027.

Research output: Contribution to journalArticle

@article{92f1bf94e4544cc4bbeba8d75235b891,
title = "Autoinhibition and autoactivation of the DNA replication checkpoint kinase Cds1",
abstract = "Cds1 is the ortholog of Chk2 and the major effector of the DNA replication checkpoint in Schizosaccharomyces pombe. Previous studies have shown that Cds1 is activated by a two-stage mechanism. In the priming stage, the sensor kinase Rad3 and the mediator Mrc1 function to phosphorylate a threonine residue, Thr11, in the SQ/TQ domain of Cds1. In the autoactivation stage, primed Cds1 molecules dimerize via intermolecular interactions between the phosphorylated Thr11 in one Cds1 and the forkhead-associated domain of the other. Dimerization activates Cds1, probably by promoting autophosphorylation. To define the mechanisms for the autoactivation of primed Cds1 and the regulation of this process, we carried out genetic and biochemical studies to identify phosphorylatable residues required for checkpoint activation. Our data indicate that dimerization of Cds1 promotes trans-autophosphorylation of a number of residues in the catalytic domain, but phosphorylation of a highly conserved threonine residue (Thr328) in the activation loop is the only covalent modification required for kinase activation in vitro and in vivo. Autophosphorylation of Thr328 and kinase activation in unprimed, monomeric Cds1 are strongly inhibited by the C-terminal 27-amino acid tail of the enzyme. This autoinhibitory effect may play an important role in preventing spontaneous activation of the replication checkpoint during normal cell cycles. The two-stage activation pathway and the autoinhibition mechanism, which are probably shared by other members of the Chk2 family, provide sensitivity, specificity, and noise immunity, properties required for the replication checkpoint.",
author = "Xu, {Yong Jie} and Thomas Kelly",
year = "2009",
month = "6",
day = "5",
doi = "10.1074/jbc.M900785200",
language = "English (US)",
volume = "284",
pages = "16016--16027",
journal = "Journal of Biological Chemistry",
issn = "0021-9258",
publisher = "American Society for Biochemistry and Molecular Biology Inc.",
number = "23",

}

TY - JOUR

T1 - Autoinhibition and autoactivation of the DNA replication checkpoint kinase Cds1

AU - Xu, Yong Jie

AU - Kelly, Thomas

PY - 2009/6/5

Y1 - 2009/6/5

N2 - Cds1 is the ortholog of Chk2 and the major effector of the DNA replication checkpoint in Schizosaccharomyces pombe. Previous studies have shown that Cds1 is activated by a two-stage mechanism. In the priming stage, the sensor kinase Rad3 and the mediator Mrc1 function to phosphorylate a threonine residue, Thr11, in the SQ/TQ domain of Cds1. In the autoactivation stage, primed Cds1 molecules dimerize via intermolecular interactions between the phosphorylated Thr11 in one Cds1 and the forkhead-associated domain of the other. Dimerization activates Cds1, probably by promoting autophosphorylation. To define the mechanisms for the autoactivation of primed Cds1 and the regulation of this process, we carried out genetic and biochemical studies to identify phosphorylatable residues required for checkpoint activation. Our data indicate that dimerization of Cds1 promotes trans-autophosphorylation of a number of residues in the catalytic domain, but phosphorylation of a highly conserved threonine residue (Thr328) in the activation loop is the only covalent modification required for kinase activation in vitro and in vivo. Autophosphorylation of Thr328 and kinase activation in unprimed, monomeric Cds1 are strongly inhibited by the C-terminal 27-amino acid tail of the enzyme. This autoinhibitory effect may play an important role in preventing spontaneous activation of the replication checkpoint during normal cell cycles. The two-stage activation pathway and the autoinhibition mechanism, which are probably shared by other members of the Chk2 family, provide sensitivity, specificity, and noise immunity, properties required for the replication checkpoint.

AB - Cds1 is the ortholog of Chk2 and the major effector of the DNA replication checkpoint in Schizosaccharomyces pombe. Previous studies have shown that Cds1 is activated by a two-stage mechanism. In the priming stage, the sensor kinase Rad3 and the mediator Mrc1 function to phosphorylate a threonine residue, Thr11, in the SQ/TQ domain of Cds1. In the autoactivation stage, primed Cds1 molecules dimerize via intermolecular interactions between the phosphorylated Thr11 in one Cds1 and the forkhead-associated domain of the other. Dimerization activates Cds1, probably by promoting autophosphorylation. To define the mechanisms for the autoactivation of primed Cds1 and the regulation of this process, we carried out genetic and biochemical studies to identify phosphorylatable residues required for checkpoint activation. Our data indicate that dimerization of Cds1 promotes trans-autophosphorylation of a number of residues in the catalytic domain, but phosphorylation of a highly conserved threonine residue (Thr328) in the activation loop is the only covalent modification required for kinase activation in vitro and in vivo. Autophosphorylation of Thr328 and kinase activation in unprimed, monomeric Cds1 are strongly inhibited by the C-terminal 27-amino acid tail of the enzyme. This autoinhibitory effect may play an important role in preventing spontaneous activation of the replication checkpoint during normal cell cycles. The two-stage activation pathway and the autoinhibition mechanism, which are probably shared by other members of the Chk2 family, provide sensitivity, specificity, and noise immunity, properties required for the replication checkpoint.

UR - http://www.scopus.com/inward/record.url?scp=67650152234&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=67650152234&partnerID=8YFLogxK

U2 - 10.1074/jbc.M900785200

DO - 10.1074/jbc.M900785200

M3 - Article

C2 - 19357077

AN - SCOPUS:67650152234

VL - 284

SP - 16016

EP - 16027

JO - Journal of Biological Chemistry

JF - Journal of Biological Chemistry

SN - 0021-9258

IS - 23

ER -