Auditory feedback effectiveness for enabling safe sclera force in robot-assisted vitreoretinal surgery: A multi-user study

Ali Ebrahimi, Marina Roizenblatt, Niravkumar Patel, Peter Gehlbach, Iulian Iordachita

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Robot-assisted retinal surgery has become increasingly prevalent in recent years in part due to the potential for robots to help surgeons improve the safety of an immensely delicate and difficult set of tasks. The integration of robots into retinal surgery has resulted in diminished surgeon perception of tool-to-tissue interaction forces due to robot's stiffness. The tactile perception of these interaction forces (sclera force) has long been a crucial source of feedback for surgeons who rely on them to guide surgical maneuvers and to prevent damaging forces from being applied to the eye. This problem is exacerbated when there are unfavorable sclera forces originating from patient movements (dynamic eyeball manipulation) during surgery which may cause the sclera forces to increase even drastically. In this study we aim at evaluating the efficacy of providing warning auditory feedback based on the level of sclera force measured by force sensing instruments. The intent is to enhance safety during dynamic eye manipulations in robot-assisted retinal surgery. The disturbances caused by lateral movement of patient's head are simulated using a piezo-actuated linear stage. The Johns Hopkins Steady-Hand Eye Robot (SHER), is then used in a multi-user experiment. Twelve participants are asked to perform a mock retinal surgery by following painted vessels inside an eye phantom using a force sensing instrument while auditory feedback is provided. The results indicate that the users are able to handle the eye motion disturbances while maintaining the sclera forces within safe boundaries when audio feedback is provided.

Original languageEnglish (US)
Title of host publication2020 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2020
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3274-3280
Number of pages7
ISBN (Electronic)9781728162126
DOIs
StatePublished - Oct 24 2020
Externally publishedYes
Event2020 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2020 - Las Vegas, United States
Duration: Oct 24 2020Jan 24 2021

Publication series

NameIEEE International Conference on Intelligent Robots and Systems
ISSN (Print)2153-0858
ISSN (Electronic)2153-0866

Conference

Conference2020 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2020
Country/TerritoryUnited States
CityLas Vegas
Period10/24/201/24/21

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Software
  • Computer Vision and Pattern Recognition
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'Auditory feedback effectiveness for enabling safe sclera force in robot-assisted vitreoretinal surgery: A multi-user study'. Together they form a unique fingerprint.

Cite this