Assessment of severity of coronary artery stenosis in a canine model using the PET agent 18F-fluorobenzyl triphenyl phosphonium: Comparison with 99mTc-tetrofosmin

Igal Madar, Hayden Ravert, Antony DiPaula, Yong Du, Robert F. Dannals, Lewis Becker

Research output: Contribution to journalArticlepeer-review


Myocardial perfusion imaging plays an important role in clinical management of coronary artery disease, but the most commonly used radionuclides significantly underestimate the severity of coronary artery stenosis. The objective of this study was to evaluate the potential clinical utility of the PET compound 18F-fluorobenzyl triphenyl phosphonium ( 18F-FBnTP) and characterize its capacity to assess the severity of coronary artery stenosis in a canine model in vivo and ex vivo. Methods: 18F-FBnTP myocardial uptake was measured in 17 dogs with various degrees of stenosis of the left anterior descending (LAD) or circumflex (LCx) coronary arteries during adenosine vasodilation, using dynamic PET and γ-well counting. True myocardial blood flow in ischemic (IS) and nonischemic (NIS) beds of the left ventricle was determined with radioactive microspheres. 18F-FBnTP and 99mTc-tetrofosmin activities were compared in 8 dogs ex vivo. Results: The quantitative assessment of the perfusion defect was significantly (P < 0.03) more accurate with 18F-FBnTP than with 99mTc-tetrofosmin, in mild (IS/NIS; 0.72 ± 0.08, 0.93 ± 0.07, respectively, mean ± SE) and severe stenosis (0.42 ± 0.05, 0.64 ± 0.08, respectively), compared with microsphere flow (mild, 0.43 ± 0.06; severe, 0.22 ± 0.04). The IS/NIS ratio of both radionuclides correlated linearly with microsphere flow disparity with a similar slope. Flow defect contrast was 2.7 times greater for 18F-FBnTP than for 99mTc-tetrofosmin, as inferred from the regression line intercept (0.14 vs. 0.38, respectively). The 18F-FBnTP PET IS/NIS ratio (mild, 0.70 ± 0.04; severe, 0.46 ± 0.02), did not differ statistically (P ≥ 0.330) from that measured ex vivo. A nearly identical qualitative and quantitative estimate of stenosis severity was obtained by early, short (5 - 15-min) and delayed, prolonged (30 - 60-min) 18F-FBnTP PET scans. The stenotic area measured by PET was 16% smaller than that defined by tissue staining. Conclusion: 18F-FBnTP PET is a promising new technology for rapid noninvasive detection and assessment of perfusion defect severity in the myocardium.

Original languageEnglish (US)
Pages (from-to)1021-1030
Number of pages10
JournalJournal of Nuclear Medicine
Issue number6
StatePublished - Jun 2007


  • FBnTP
  • Heart
  • Ischemia
  • PET
  • Perfusion
  • Tetrofosmin

ASJC Scopus subject areas

  • Radiology Nuclear Medicine and imaging

Fingerprint Dive into the research topics of 'Assessment of severity of coronary artery stenosis in a canine model using the PET agent <sup>18</sup>F-fluorobenzyl triphenyl phosphonium: Comparison with <sup>99m</sup>Tc-tetrofosmin'. Together they form a unique fingerprint.

Cite this