Assays to Measure Latency, Reservoirs, and Reactivation

Research output: Chapter in Book/Report/Conference proceedingChapter

14 Scopus citations


HIV-1 persists even in patients who are successfully treated with combination antiretroviral therapy. The major barrier to cure is a small pool of latently infected resting CD4+ T cells carrying an integrated copy of the viral genome that is not expressed while the cells remain in a resting state. Targeting this latent reservoir is a major focus of HIV-1 cure research, and the development of a rapid and scalable assay for the reservoir is a rate-limiting step in the search for a cure. The most commonly used assays are standard PCR assays targeting conserved regions of the HIV-1 genome. However, because the vast majority of HIV-1 proviruses are defective, such assays may not accurately capture changes in the minor subset of proviruses that are replication-competent and that pose a barrier to cure. On the other hand, the viral outgrowth assay that was used to initially define the latent reservoir may underestimate reservoir size because not all replication-competent proviruses are induced by a single round of T cell activation in this assay. Therefore, this assay is best regarded as a definitive minimal estimate of reservoir size. The best approach may be to measure all of the proviruses with the potential to cause viral rebound. A variety of novel assays have recently been described. Ultimately, the assay that best predicts time to viral rebound will be the most useful to the cure effort.

Original languageEnglish (US)
Title of host publicationCurrent Topics in Microbiology and Immunology
PublisherSpringer Verlag
Number of pages19
StatePublished - 2018

Publication series

NameCurrent Topics in Microbiology and Immunology
ISSN (Print)0070-217X
ISSN (Electronic)2196-9965

ASJC Scopus subject areas

  • Immunology and Allergy
  • Microbiology
  • Immunology
  • Microbiology (medical)


Dive into the research topics of 'Assays to Measure Latency, Reservoirs, and Reactivation'. Together they form a unique fingerprint.

Cite this