## Abstract

Background: Time trends in infant mortality for the 20^{th }century show a curvilinear pattern that most demographers have assumed to be approximately exponential. Virtually all cross-country comparisons and time series analyses of infant mortality have studied the logarithm of infant mortality to account for the curvilinear time trend. However, there is no evidence that the log transform is the best fit for infant mortality time trends. Methods: We use maximum likelihood methods to determine the best transformation to fit time trends in infant mortality reduction in the 20^{th }century and to assess the importance of the proper transformation in identifying the relationship between infant mortality and gross domestic product (GDP) per capita. We apply the Box Cox transform to infant mortality rate (IMR) time series from 18 countries to identify the best fitting value of lambda for each country and for the pooled sample. For each country, we test the value of λ against the null that λ = 0 (logarithmic model) and against the null that λ = 1 (linear model). We then demonstrate the importance of selecting the proper transformation by comparing regressions of ln(IMR) on same year GDP per capita against Box Cox transformed models. Results: Based on chi-squared test statistics, infant mortality decline is best described as an exponential decline only for the United States. For the remaining 17 countries we study, IMR decline is neither best modelled as logarithmic nor as a linear process. Imposing a logarithmic transform on IMR can lead to bias in fitting the relationship between IMR and GDP per capita. Conclusion: The assumption that IMR declines are exponential is enshrined in the Preston curve and in nearly all cross-country as well as time series analyses of IMR data since Preston's 1975 paper, but this assumption is seldom correct. Statistical analyses of IMR trends should assess the robustness of findings to transformations other than the log transform.

Original language | English (US) |
---|---|

Article number | 1478 |

Pages (from-to) | 13 |

Number of pages | 1 |

Journal | Population Health Metrics |

Volume | 7 |

DOIs | |

State | Published - Aug 23 2009 |

## ASJC Scopus subject areas

- Epidemiology
- Public Health, Environmental and Occupational Health

## Fingerprint

Dive into the research topics of 'Are infant mortality rate declines exponential? the general pattern of 20^{th }century infant mortality rate decline'. Together they form a unique fingerprint.