TY - JOUR
T1 - Are infant mortality rate declines exponential? the general pattern of 20th century infant mortality rate decline
AU - Bishai, David
AU - Opuni, Marjorie
N1 - Funding Information:
This study received financial support from the Gates Foundation through Grand Challenge 13. Acknowledgements also go to Population Health Metrics and to the universities of Harvard, Johns Hopkins, MIT, and Queensland. Helpful comments from Vladimir Canudas are gratefully acknowledged. All errors are our own.
PY - 2009/8/23
Y1 - 2009/8/23
N2 - Background: Time trends in infant mortality for the 20th century show a curvilinear pattern that most demographers have assumed to be approximately exponential. Virtually all cross-country comparisons and time series analyses of infant mortality have studied the logarithm of infant mortality to account for the curvilinear time trend. However, there is no evidence that the log transform is the best fit for infant mortality time trends. Methods: We use maximum likelihood methods to determine the best transformation to fit time trends in infant mortality reduction in the 20th century and to assess the importance of the proper transformation in identifying the relationship between infant mortality and gross domestic product (GDP) per capita. We apply the Box Cox transform to infant mortality rate (IMR) time series from 18 countries to identify the best fitting value of lambda for each country and for the pooled sample. For each country, we test the value of λ against the null that λ = 0 (logarithmic model) and against the null that λ = 1 (linear model). We then demonstrate the importance of selecting the proper transformation by comparing regressions of ln(IMR) on same year GDP per capita against Box Cox transformed models. Results: Based on chi-squared test statistics, infant mortality decline is best described as an exponential decline only for the United States. For the remaining 17 countries we study, IMR decline is neither best modelled as logarithmic nor as a linear process. Imposing a logarithmic transform on IMR can lead to bias in fitting the relationship between IMR and GDP per capita. Conclusion: The assumption that IMR declines are exponential is enshrined in the Preston curve and in nearly all cross-country as well as time series analyses of IMR data since Preston's 1975 paper, but this assumption is seldom correct. Statistical analyses of IMR trends should assess the robustness of findings to transformations other than the log transform.
AB - Background: Time trends in infant mortality for the 20th century show a curvilinear pattern that most demographers have assumed to be approximately exponential. Virtually all cross-country comparisons and time series analyses of infant mortality have studied the logarithm of infant mortality to account for the curvilinear time trend. However, there is no evidence that the log transform is the best fit for infant mortality time trends. Methods: We use maximum likelihood methods to determine the best transformation to fit time trends in infant mortality reduction in the 20th century and to assess the importance of the proper transformation in identifying the relationship between infant mortality and gross domestic product (GDP) per capita. We apply the Box Cox transform to infant mortality rate (IMR) time series from 18 countries to identify the best fitting value of lambda for each country and for the pooled sample. For each country, we test the value of λ against the null that λ = 0 (logarithmic model) and against the null that λ = 1 (linear model). We then demonstrate the importance of selecting the proper transformation by comparing regressions of ln(IMR) on same year GDP per capita against Box Cox transformed models. Results: Based on chi-squared test statistics, infant mortality decline is best described as an exponential decline only for the United States. For the remaining 17 countries we study, IMR decline is neither best modelled as logarithmic nor as a linear process. Imposing a logarithmic transform on IMR can lead to bias in fitting the relationship between IMR and GDP per capita. Conclusion: The assumption that IMR declines are exponential is enshrined in the Preston curve and in nearly all cross-country as well as time series analyses of IMR data since Preston's 1975 paper, but this assumption is seldom correct. Statistical analyses of IMR trends should assess the robustness of findings to transformations other than the log transform.
UR - http://www.scopus.com/inward/record.url?scp=71049118041&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=71049118041&partnerID=8YFLogxK
U2 - 10.1186/1478-7954-7-13
DO - 10.1186/1478-7954-7-13
M3 - Review article
C2 - 19698144
AN - SCOPUS:71049118041
VL - 7
SP - 13
JO - Population Health Metrics
JF - Population Health Metrics
SN - 1478-7954
M1 - 1478
ER -