Applied Force during Piston Prosthesis Placement in a 3D-Printed Model: Freehand vs Robot-Assisted Techniques

Christopher R. Razavi, Paul R. Wilkening, Rui Yin, Nicolas Lamaison, Russell H Taylor, John P Carey, Francis Creighton

Research output: Contribution to journalArticle

Abstract

Objectives: To describe a 3D-printed middle ear model that quantifies the force applied to the modeled incus. To compare the forces applied during placement and crimping of a stapes prosthesis between the Robotic ENT Microsurgery System (REMS) and the freehand technique in this model. Study Design: Prospective feasibility study. Setting: Robotics laboratory. Subjects and Methods: A middle ear model was designed and 3D printed to facilitate placement and crimping of a piston prosthesis. The modeled incus was mounted to a 6–degree of freedom force sensor to measure forces/torques applied on the incus. Six participants—1 fellowship-trained neurotologist, 2 neurotology fellows, and 3 otolaryngology–head and neck surgery residents—placed and crimped a piston prosthesis in this model, 3 times freehand and 3 times REMS assisted. Maximum force applied to the incus was then calculated for prosthesis placement and crimping from force/torque sensor readings for each trial. Robotic and freehand outcomes were compared with a linear regression model. Results: Mean maximum magnitude of force during prosthesis placement was 126.4 ± 73.6 mN and 105.0 ± 69.4 mN for the freehand and robotic techniques, respectively (P =.404). For prosthesis crimping, the mean maximum magnitude of force was 469.3 ± 225.2 mN for the freehand technique and 272.7 ± 97.4 mN for the robotic technique (P =.049). Conclusions: Preliminary data demonstrate that REMS-assisted stapes prosthesis placement and crimping are feasible with a significant reduction in maximum force applied to the incus during crimping with the REMS in comparison with freehand.

Original languageEnglish (US)
Pages (from-to)320-325
Number of pages6
JournalOtolaryngology - Head and Neck Surgery (United States)
Volume160
Issue number2
DOIs
Publication statusPublished - Feb 1 2019

    Fingerprint

Keywords

  • 3D printing
  • otology
  • otosclerosis
  • robotic surgery
  • stapes

ASJC Scopus subject areas

  • Surgery
  • Otorhinolaryngology

Cite this