Animal models for autoimmune myocarditis and autoimmune thyroiditis.

Daniela Ciháková, Rajni B. Sharma, De Lisa Fairweather, Marina Afanasyeva, Noel R. Rose

Research output: Contribution to journalArticlepeer-review

65 Scopus citations

Abstract

This chapter describes four murine models of autoimmune diseases: two related to autoimmune myocarditis and two related to autoimmune thyroiditis. The first model, Coxsackie virus B3 (CB3)-induced myocarditis, results in the development of acute myocarditis in susceptible as well as resistant mouse strains, whereas chronic myocarditis develops only in genetically susceptible mice. CB3-induced myocarditis closely resembles the course of human myocarditis, which is believed to be initiated by viral infection. Mouse cardiac myosin heavy chain has been identified as the major antigen associated with the late chronic phase of viral myocarditis. The second model is cardiac myosin-induced experimental autoimmune myocarditis (EAM) and, in a modification, cardiac alpha-myosin heavy chain peptide-induced myocarditis. In the EAM model, cardiac myosin or the relevant peptide in Freund's complete adjuvant (FCA) is injected subcutaneously into mice. The immune response, the histological changes, and the genetic susceptibility seen in EAM are similar to those of CB3-induced myocarditis. The third model is experimental autoimmune thyroiditis (EAT). EAT can be induced in genetically susceptible strains of mice by immunization with mouse thyroglobulin in FCA or lipopolysaccharide. Mice susceptible to EAT have the H-2A(k), H-2A(s), or H-2A(q) alleles. We describe here a standard technique for the induction of EAT; it was developed in our laboratory and is widely used as a model for studying Hashimoto's thyroiditis. The fourth model presented in this chapter is that of spontaneous autoimmune thyroiditis in NOD.H2h4 mice. These mice express the H-2A(k) allele on an NOD genetic background and develop spontaneous thyroiditis, which is exacerbated with dietary iodine.

Original languageEnglish (US)
Pages (from-to)175-193
Number of pages19
JournalMethods in Molecular Medicine
Volume102
DOIs
StatePublished - 2004

ASJC Scopus subject areas

  • Molecular Medicine

Fingerprint

Dive into the research topics of 'Animal models for autoimmune myocarditis and autoimmune thyroiditis.'. Together they form a unique fingerprint.

Cite this