Angiogenesis in wounds treated by microdeformational wound therapy

Paolo Erba, Rei Ogawa, Maximilian Ackermann, Avner Adini, Lino F. Miele, Pouya Dastouri, Doug Helm, Steven J. Mentzer, Robert J. D'Amato, George F. Murphy, Moritz A. Konerding, Dennis P. Orgill

Research output: Contribution to journalArticlepeer-review

Abstract

Background: Mechanical forces play an important role in tissue neovascularization and are a constituent part ofmodern wound therapies. The mechanisms by which vacuum assisted closure (VAC) modulates wound angiogenesis are still largely unknown. Objective: To investigate how VAC treatment affects wound hypoxia and related profiles of angiogenic factors as well as to identify the anatomical characteristics of the resultant, newly formed vessels. Methods: Wound neovascularization was evaluated by morphometric analysis of CD31-stained wound cross-sections as well as by corrosion casting analysis. Wound hypoxia and mRNA expression of HIF-1á and associated angiogenic factors were evaluated by pimonidazole hydrochloride staining and quantitative reverse transcription-polymerase chain reaction (RT-PCR), respectively. Vascular endothelial growth factor (VEGF) protein levels were determined by western blot analysis. Results: VAC-treated wounds were characterized by the formation of elongated vessels aligned in parallel and consistent with physiologically function, compared to occlusive dressing control wounds that showed formation of tortuous, disoriented vessels. Moreover, VAC-treated wounds displayed a welloxygenated wound bed, with hypoxia limited to the direct proximity of the VAC-foam interface, where higher VEGF levels were found. By contrast, occlusive dressing control wounds showed generalized hypoxia, with associated accumulation of HIF-1á and related angiogenic factors. Conclusions: The combination of established gradients of hypoxia and VEGF expression along with mechanical forces exerted by VAC therapy was associated with the formation of more physiological blood vessels compared to occlusive dressing control wounds. These morphological changes are likely a necessary condition for better wound healing.

Original languageEnglish (US)
Pages (from-to)402-409
Number of pages8
JournalAnnals of surgery
Volume253
Issue number2
DOIs
StatePublished - Feb 2011

ASJC Scopus subject areas

  • Surgery

Fingerprint Dive into the research topics of 'Angiogenesis in wounds treated by microdeformational wound therapy'. Together they form a unique fingerprint.

Cite this