Androgen glucuronides. I. Direct formation in rat accessory sex organs

Leland W.K. Chung, Donald S. Coffey

Research output: Contribution to journalArticle


A simple one-step procedure is described on the isolation of androgen glucuronides from various rat tissues. This procedure uses polyacrylamide gel electrophoresis, and permits a quantitative isolation of a single band containing the total androgen glucuronides without the contamination of free androgens and androgen sulfates. This procedure was used to determine the ability of various tissues of the rat to form androgen glucuronides directly when they were incubated with 1,2-[3H]-testosterone (0.1 μM) in vitro. Of eleven organs studied, only the accessory sex organs (ventral prostate, seminal vesicle, and coagulating gland), liver, and kidney were capable of forming androgen glucuronides. At the end of a one-hour incubation period, approximately 1% of the total radiolabeled steroids in the prostatic tissue minces were in the form of glucuronide conjugates. The predominant androgen glucuronide formed in the accessory sex organs was 5α-androstane-3α,17β-diol 17β-d-glucuronide. This is in contrast to the rat liver and kidney in which testosterone glucuronide was the predominant conjugate. A similar amount of labeled glucuronide conjugates was formed from either [3H]-testosterone, [3H]-dihydrotestosterone or [3H]-androstenedione, whereas negligible amount of steroid conjugates was formed from [3H]-cortisol. The formation of androgen glucuronides requires metabolically active tissues; furthermore, the conjugation process was inhibited by the antiandrogen, cyproterone acetate, or by metabolic inhibitors, such as oligomycin or N-ethylmaleimide.

Original languageEnglish (US)
Pages (from-to)223-243
Number of pages21
Issue number2
StatePublished - Aug 1977


ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Endocrinology
  • Pharmacology
  • Clinical Biochemistry
  • Organic Chemistry

Cite this