TY - JOUR
T1 - Ancestry-specific polygenic scores and SNP heritability of 25(OH)D in African- And European-ancestry populations
AU - Hatchell, Kathryn E.
AU - Lu, Qionshi
AU - Hebbring, Scott J.
AU - Michos, Erin D.
AU - Wood, Alexis C.
AU - Engelman, Corinne D.
N1 - Publisher Copyright:
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-ND 4.0 International license.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2019/4/4
Y1 - 2019/4/4
N2 - Context Vitamin D inadequacy, assessed by 25-hydroxyvitamin D [25(OH)D], affects around 50% of adults in the United States and is associated with numerous adverse health outcomes. Blood 25(OH)D concentrations are influenced by genetic factors that may determine how much vitamin D intake is required to reach optimal 25(OH)D. Despite large genome-wide association studies (GWASs), only a small portion of the genetic factors contributing to differences in 25(OH)D levels has been discovered. Objective Therefore, knowledge of a fuller set of genetic factors could be useful for risk prediction of 25(OH)D inadequacy, personalized vitamin D supplementation, and prevention of morbidity and mortality from deficient 25(OH)D. Design Using PRSice and weights from published African- and European-ancestry GWAS summary statistics, ancestry-specific polygenic scores (PGSs) were created to capture a more complete set of genetic factors. Patients or Other Participants Participants (European ancestry n=9,569, African ancestry n=2,761) came from three cohort studies. Main Outcome Measure(s) Blood concentrations of 25(OH)D. Results The PGS for African ancestry was derived using all input SNPs (a p-value cut-off of 1.0) and had an R2 of 0.3%; for European ancestry, the optimal PGS used a p-value cut-off of 3.5×10−4 in the target/tuning dataset and had an R2 of 1.0% in the validation cohort. Those with highest genetic risk had 25(OH)D that was 2.8-3.0 ng/ml lower than those with lowest genetic risk (p=0.0463 to 3.2×10−13), requiring an additional 467 to 500 IU of vitamin D intake to maintain equivalent 25(OH)D. Conclusions PGSs are a powerful predictive tool that could be leveraged for personalized vitamin D supplementation to prevent the negative downstream effects of 25(OH)D inadequacy.
AB - Context Vitamin D inadequacy, assessed by 25-hydroxyvitamin D [25(OH)D], affects around 50% of adults in the United States and is associated with numerous adverse health outcomes. Blood 25(OH)D concentrations are influenced by genetic factors that may determine how much vitamin D intake is required to reach optimal 25(OH)D. Despite large genome-wide association studies (GWASs), only a small portion of the genetic factors contributing to differences in 25(OH)D levels has been discovered. Objective Therefore, knowledge of a fuller set of genetic factors could be useful for risk prediction of 25(OH)D inadequacy, personalized vitamin D supplementation, and prevention of morbidity and mortality from deficient 25(OH)D. Design Using PRSice and weights from published African- and European-ancestry GWAS summary statistics, ancestry-specific polygenic scores (PGSs) were created to capture a more complete set of genetic factors. Patients or Other Participants Participants (European ancestry n=9,569, African ancestry n=2,761) came from three cohort studies. Main Outcome Measure(s) Blood concentrations of 25(OH)D. Results The PGS for African ancestry was derived using all input SNPs (a p-value cut-off of 1.0) and had an R2 of 0.3%; for European ancestry, the optimal PGS used a p-value cut-off of 3.5×10−4 in the target/tuning dataset and had an R2 of 1.0% in the validation cohort. Those with highest genetic risk had 25(OH)D that was 2.8-3.0 ng/ml lower than those with lowest genetic risk (p=0.0463 to 3.2×10−13), requiring an additional 467 to 500 IU of vitamin D intake to maintain equivalent 25(OH)D. Conclusions PGSs are a powerful predictive tool that could be leveraged for personalized vitamin D supplementation to prevent the negative downstream effects of 25(OH)D inadequacy.
KW - ancestry
KW - diet
KW - Genetics
KW - heritability
KW - polygenic risk score
KW - vitamin D
UR - http://www.scopus.com/inward/record.url?scp=85095617611&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85095617611&partnerID=8YFLogxK
U2 - 10.1101/596619
DO - 10.1101/596619
M3 - Article
AN - SCOPUS:85095617611
JO - Advances in Water Resources
JF - Advances in Water Resources
SN - 0309-1708
ER -