An open-source research kit for the da Vinci® Surgical System

Peter Kazanzidesf, Zihan Chen, Anton Deguet, Gregory S. Fischer, Russell H. Taylor, Simon P. Dimaio

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We present a telerobotics research platform that provides complete access to all levels of control via open-source electronics and software. The electronics employs an FPGA to enable a centralized computation and distributed I/O architecture in which all control computations are implemented in a familiar development environment (Linux PC) and low-latency I/O is performed over an IEEE-1394a (FireWire) bus at speeds up to 400 Mbits/sec. The mechanical components are obtained from retired first-generation da Vinci ® Surgical Systems. This system is currently installed at 11 research institutions, with additional installations underway, thereby creating a research community around a common open-source hardware and software platform.

Original languageEnglish (US)
Title of host publicationProceedings - IEEE International Conference on Robotics and Automation
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages6434-6439
Number of pages6
ISBN (Electronic)9781479936854, 9781479936854
DOIs
StatePublished - Sep 22 2014
Event2014 IEEE International Conference on Robotics and Automation, ICRA 2014 - Hong Kong, China
Duration: May 31 2014Jun 7 2014

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Other

Other2014 IEEE International Conference on Robotics and Automation, ICRA 2014
Country/TerritoryChina
CityHong Kong
Period5/31/146/7/14

ASJC Scopus subject areas

  • Software
  • Control and Systems Engineering
  • Artificial Intelligence
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'An open-source research kit for the da Vinci® Surgical System'. Together they form a unique fingerprint.

Cite this