An integrative model of the cardiac ventricular myocyte incorporating local control of Ca2+ release

Joseph L. Greenstein, Raimond Winslow

Research output: Contribution to journalArticle

Abstract

The local control theory of excitation-contraction (EC) coupling in cardiac muscle asserts that L-type Ca2+ current tightly controls Ca2+ release from the sarcoplasmic reticulum (SR) via local interaction of closely apposed L-type Ca2+ channels (LCCs) and ryanodine receptors (RyRs). These local interactions give rise to smoothly graded Ca2+-induced Ca2+ release (CICR), which exhibits high gain. In this study we present a biophysically detailed model of the normal canine ventricular myocyte that conforms to local control theory. The model formulation incorporates details of microscopic EC coupling properties in the form of Ca2+ release units (CaRUs) in which individual sarcolemmal LCCs interact in a stochastic manner with nearby RyRs in localized regions where junctional SR membrane and transverse-tubular membrane are in close proximity. The CaRUs are embedded within and interact with the global systems of the myocyte describing ionic and membrane pump/exchanger currents, SR Ca2+ uptake, and time-varying cytosolic ion concentrations to form a model of the cardiac action potential (AP). The model can reproduce both the detailed properties of EC coupling, such as variable gain and graded SR Ca2+ release, and whole-cell phenomena, such as modulation of AP duration by SR Ca2+ release. Simulations indicate that the local control paradigm predicts stable APs when the L-type Ca2+ current is adjusted in accord with the balance between voltage- and Ca2+-dependent inactivation processes as measured experimentally, a scenario where common pool models become unstable. The local control myocyte model provides a means for studying the interrelationship between microscopic and macroscopic behaviors in a manner that would not be possible in experiments.

Original languageEnglish (US)
Pages (from-to)2918-2945
Number of pages28
JournalBiophysical Journal
Volume83
Issue number6
StatePublished - Dec 1 2002

Fingerprint

Sarcoplasmic Reticulum
Cardiac Myocytes
Excitation Contraction Coupling
Muscle Cells
Ryanodine Receptor Calcium Release Channel
Action Potentials
Membranes
Canidae
Myocardium
Ions

ASJC Scopus subject areas

  • Biophysics

Cite this

An integrative model of the cardiac ventricular myocyte incorporating local control of Ca2+ release. / Greenstein, Joseph L.; Winslow, Raimond.

In: Biophysical Journal, Vol. 83, No. 6, 01.12.2002, p. 2918-2945.

Research output: Contribution to journalArticle

@article{478cb7ed33d54ab1a40b59ad7a91e7ce,
title = "An integrative model of the cardiac ventricular myocyte incorporating local control of Ca2+ release",
abstract = "The local control theory of excitation-contraction (EC) coupling in cardiac muscle asserts that L-type Ca2+ current tightly controls Ca2+ release from the sarcoplasmic reticulum (SR) via local interaction of closely apposed L-type Ca2+ channels (LCCs) and ryanodine receptors (RyRs). These local interactions give rise to smoothly graded Ca2+-induced Ca2+ release (CICR), which exhibits high gain. In this study we present a biophysically detailed model of the normal canine ventricular myocyte that conforms to local control theory. The model formulation incorporates details of microscopic EC coupling properties in the form of Ca2+ release units (CaRUs) in which individual sarcolemmal LCCs interact in a stochastic manner with nearby RyRs in localized regions where junctional SR membrane and transverse-tubular membrane are in close proximity. The CaRUs are embedded within and interact with the global systems of the myocyte describing ionic and membrane pump/exchanger currents, SR Ca2+ uptake, and time-varying cytosolic ion concentrations to form a model of the cardiac action potential (AP). The model can reproduce both the detailed properties of EC coupling, such as variable gain and graded SR Ca2+ release, and whole-cell phenomena, such as modulation of AP duration by SR Ca2+ release. Simulations indicate that the local control paradigm predicts stable APs when the L-type Ca2+ current is adjusted in accord with the balance between voltage- and Ca2+-dependent inactivation processes as measured experimentally, a scenario where common pool models become unstable. The local control myocyte model provides a means for studying the interrelationship between microscopic and macroscopic behaviors in a manner that would not be possible in experiments.",
author = "Greenstein, {Joseph L.} and Raimond Winslow",
year = "2002",
month = "12",
day = "1",
language = "English (US)",
volume = "83",
pages = "2918--2945",
journal = "Biophysical Journal",
issn = "0006-3495",
publisher = "Biophysical Society",
number = "6",

}

TY - JOUR

T1 - An integrative model of the cardiac ventricular myocyte incorporating local control of Ca2+ release

AU - Greenstein, Joseph L.

AU - Winslow, Raimond

PY - 2002/12/1

Y1 - 2002/12/1

N2 - The local control theory of excitation-contraction (EC) coupling in cardiac muscle asserts that L-type Ca2+ current tightly controls Ca2+ release from the sarcoplasmic reticulum (SR) via local interaction of closely apposed L-type Ca2+ channels (LCCs) and ryanodine receptors (RyRs). These local interactions give rise to smoothly graded Ca2+-induced Ca2+ release (CICR), which exhibits high gain. In this study we present a biophysically detailed model of the normal canine ventricular myocyte that conforms to local control theory. The model formulation incorporates details of microscopic EC coupling properties in the form of Ca2+ release units (CaRUs) in which individual sarcolemmal LCCs interact in a stochastic manner with nearby RyRs in localized regions where junctional SR membrane and transverse-tubular membrane are in close proximity. The CaRUs are embedded within and interact with the global systems of the myocyte describing ionic and membrane pump/exchanger currents, SR Ca2+ uptake, and time-varying cytosolic ion concentrations to form a model of the cardiac action potential (AP). The model can reproduce both the detailed properties of EC coupling, such as variable gain and graded SR Ca2+ release, and whole-cell phenomena, such as modulation of AP duration by SR Ca2+ release. Simulations indicate that the local control paradigm predicts stable APs when the L-type Ca2+ current is adjusted in accord with the balance between voltage- and Ca2+-dependent inactivation processes as measured experimentally, a scenario where common pool models become unstable. The local control myocyte model provides a means for studying the interrelationship between microscopic and macroscopic behaviors in a manner that would not be possible in experiments.

AB - The local control theory of excitation-contraction (EC) coupling in cardiac muscle asserts that L-type Ca2+ current tightly controls Ca2+ release from the sarcoplasmic reticulum (SR) via local interaction of closely apposed L-type Ca2+ channels (LCCs) and ryanodine receptors (RyRs). These local interactions give rise to smoothly graded Ca2+-induced Ca2+ release (CICR), which exhibits high gain. In this study we present a biophysically detailed model of the normal canine ventricular myocyte that conforms to local control theory. The model formulation incorporates details of microscopic EC coupling properties in the form of Ca2+ release units (CaRUs) in which individual sarcolemmal LCCs interact in a stochastic manner with nearby RyRs in localized regions where junctional SR membrane and transverse-tubular membrane are in close proximity. The CaRUs are embedded within and interact with the global systems of the myocyte describing ionic and membrane pump/exchanger currents, SR Ca2+ uptake, and time-varying cytosolic ion concentrations to form a model of the cardiac action potential (AP). The model can reproduce both the detailed properties of EC coupling, such as variable gain and graded SR Ca2+ release, and whole-cell phenomena, such as modulation of AP duration by SR Ca2+ release. Simulations indicate that the local control paradigm predicts stable APs when the L-type Ca2+ current is adjusted in accord with the balance between voltage- and Ca2+-dependent inactivation processes as measured experimentally, a scenario where common pool models become unstable. The local control myocyte model provides a means for studying the interrelationship between microscopic and macroscopic behaviors in a manner that would not be possible in experiments.

UR - http://www.scopus.com/inward/record.url?scp=0036931558&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0036931558&partnerID=8YFLogxK

M3 - Article

C2 - 12496068

AN - SCOPUS:0036931558

VL - 83

SP - 2918

EP - 2945

JO - Biophysical Journal

JF - Biophysical Journal

SN - 0006-3495

IS - 6

ER -