An in situ atlas of mitochondrial DNA in mammalian tissues reveals high content in stem/progenitor cells

Jiayu Chen, Qizhi Zheng, Lauren B. Peiffer, Jessica L. Hicks, Michael Haffner, Avi Z. Rosenberg, Moshe Levi, Xiaoxin X. Wang, Busra Ozbek, Srinivasan Yegnasubramanian, Angelo M. de Marzo

Research output: Contribution to journalArticlepeer-review


Mitochondria regulate ATP production, metabolism and cell death. Alterations in mitochondrial DNA (mtDNA) sequence and copy number are implicated in aging and organ dysfunction in diverse inherited and sporadic diseases. Since most measurements of mtDNA use homogenates of complex tissues, little is known about cell type-specific mtDNA copy number heterogeneity in normal physiology, aging and disease. Thus, the precise cell types whose loss of mitochondrial activity and altered mtDNA copy number that result in organ dysfunction in aging and disease have often not been clarified. Here, we validated an in situ hybridization approach to generate a single cell resolution atlas of mtDNA content in mammalian tissues. In hierarchically organized self-renewing tissues, higher levels of mtDNA were observed in stem/proliferative compartments compared to differentiated compartments. Striking zonal patterns of mtDNA levels in the liver reflected the known oxygen tension gradient. In the kidney, proximal and distal tubules had markedly higher mtDNA levels compared to cells within glomeruli and collecting duct epithelial cells. Decreased mtDNA levels were visualized in renal tubules as a function of aging, which was prevented by calorie restriction. We provide a novel approach for quantifying species- and cell type-specific mtDNA copy number and dynamics in any normal or diseased tissue and can be used for monitoring the effects of interventions in animal and human studies.

Original languageEnglish (US)
JournalUnknown Journal
StatePublished - Dec 19 2019

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)
  • Immunology and Microbiology(all)
  • Neuroscience(all)
  • Pharmacology, Toxicology and Pharmaceutics(all)

Fingerprint Dive into the research topics of 'An in situ atlas of mitochondrial DNA in mammalian tissues reveals high content in stem/progenitor cells'. Together they form a unique fingerprint.

Cite this