An approximate internal model principle: Applications to nonlinear models of biological systems

Burton Andrews, Eduardo D. Sontag, Pablo A. Iglesias

Research output: Chapter in Book/Report/Conference proceedingConference contribution

11 Scopus citations

Abstract

The proper function of many biological systems requires that external perturbations be detected, allowing the system to adapt to these environmental changes. It is now well established that this dual detection and adaptation requires that the system have an internal model in the feedback loop. In this paper we relax the requirement that the response of the system adapt perfectly, but instead allow regulation to within a neighborhood of zero. We show, in a nonlinear setting, that systems with the ability to detect input signals and approximately adapt require an approximate model of the input. We illustrate our results by analyzing a well-studied biological system. These results generalize previous work which treats the perfectly adapting case.

Original languageEnglish (US)
Title of host publicationProceedings of the 17th World Congress, International Federation of Automatic Control, IFAC
Edition1 PART 1
DOIs
StatePublished - 2008
Event17th World Congress, International Federation of Automatic Control, IFAC - Seoul, Korea, Republic of
Duration: Jul 6 2008Jul 11 2008

Publication series

NameIFAC Proceedings Volumes (IFAC-PapersOnline)
Number1 PART 1
Volume17
ISSN (Print)1474-6670

Other

Other17th World Congress, International Federation of Automatic Control, IFAC
Country/TerritoryKorea, Republic of
CitySeoul
Period7/6/087/11/08

Keywords

  • Design and control
  • Monitoring and performance assessment
  • Nonlinear process control

ASJC Scopus subject areas

  • Control and Systems Engineering

Fingerprint

Dive into the research topics of 'An approximate internal model principle: Applications to nonlinear models of biological systems'. Together they form a unique fingerprint.

Cite this