An analysis of coded aperture acquisition and reconstruction using multi-frame code sequences for relaxed optical design constraints

J. Webster Stayman, Nikola Subotic, William Buller

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We present an investigation of the performance of coded aperture optical systems where the elements of a set of binary coded aperture masks are applied over a sequence of acquired images. In particular, we are interested in investigating code sequences and image reconstruction algorithms that reduce the optical fidelity and hardware requirements for the system. Performance is jointly tied to the mask design, the image estimation algorithm, and the inherent optical response of the system. As such, we adopt a simplified reconstruction model and consider generalized optical system aberrations in designing masks used for multi-frame reconstruction of the imagery. We also consider the case of non-Nyquist sampled (aliased) imagery. These investigations have focused on using a regularized least-squares reconstruction model and mean squared error as a performance metric. Masks are found by attempting to minimize a closed form objective that predicts the mean squared error for the reconstruction algorithm. We find that even with suboptimal solutions that binary masks can be used to improve imagery over the case of an uncoded aperture with the same aberration.

Original languageEnglish (US)
Title of host publicationAdaptive Coded Aperture Imaging, Non-Imaging, and Unconventional Imaging Sensor Systems
DOIs
StatePublished - Dec 1 2009
Externally publishedYes
EventAdaptive Coded Aperture Imaging, Non-Imaging, and Unconventional Imaging Sensor Systems - San Diego, CA, United States
Duration: Aug 2 2009Aug 3 2009

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume7468
ISSN (Print)0277-786X

Other

OtherAdaptive Coded Aperture Imaging, Non-Imaging, and Unconventional Imaging Sensor Systems
CountryUnited States
CitySan Diego, CA
Period8/2/098/3/09

Keywords

  • Coded apertures
  • Image de-aliasing
  • Multi-frame image restoration
  • Superresolution

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'An analysis of coded aperture acquisition and reconstruction using multi-frame code sequences for relaxed optical design constraints'. Together they form a unique fingerprint.

Cite this