TY - JOUR
T1 - Altered sleep homeostasis after restraint stress in 5-HTT knock-out male mice
T2 - A role for hypocretins
AU - Rachalski, Adeline
AU - Alexandre, Chloé
AU - Bernard, Jean François
AU - Saurini, Françoise
AU - Lesch, Klaus Peter
AU - Hamon, Michel
AU - Adrien, Joëlle
AU - Fabre, Véronique
PY - 2009/12/9
Y1 - 2009/12/9
N2 - Restraint stress produces changes in the sleep pattern that are mainly characterized by a delayed increase in rapid eye movement sleep (REMS) amounts. Because the serotonin (5-HT) and the hypocretin (hcrt) systems that regulate REMS are interconnected, we used mutant mice deficient in the 5-HT transporter (5-HTT-/-) to examine the role of 5-HT and hcrt neurotransmissions in the sleep response to stress. In contrast to wild-type mice, restraint stress did not induce a delayed increase in REMS amounts in 5-HTT-/- mice, indicating impaired sleep homeostasis in mutants. However, pharmacological blockade of the hcrt type 1 receptor (hcrt-R1) before restraint stress restored the REMS increase in 5-HTT-/- mice. In line with this finding, 5-HTT-/- mutants displayed after restraint stress higher long-lasting activation of hypothalamic preprohcrt neurons than wild-type mice and elevated levels of the hcrt-1 peptide and the hcrt-R1 mRNA in the anterior raphe area. Thus, hypocretinergic neurotransmission was enhanced by stress in 5-HTT -/- mice. Furthermore, in 5-HTT-/- but not wild-type mice, hypothalamic levels of the 5-HT metabolite 5-hydroxyindole acetic acid significantly increased after restraint stress, indicating a marked enhancement of serotonergic neurotransmission in mutants. Altogether, our data show that increased serotonergic-and in turn hypocretinergic-neurotransmissions exert an inhibitory influence on stress-induced delayed REMS. We propose that the direct interactions between hcrt neurons in the hypothalamus and 5-HT neurons in the anterior raphe nuclei account, at least in part, for the adaptive sleep-wakefulness regulations triggered by acute stress.
AB - Restraint stress produces changes in the sleep pattern that are mainly characterized by a delayed increase in rapid eye movement sleep (REMS) amounts. Because the serotonin (5-HT) and the hypocretin (hcrt) systems that regulate REMS are interconnected, we used mutant mice deficient in the 5-HT transporter (5-HTT-/-) to examine the role of 5-HT and hcrt neurotransmissions in the sleep response to stress. In contrast to wild-type mice, restraint stress did not induce a delayed increase in REMS amounts in 5-HTT-/- mice, indicating impaired sleep homeostasis in mutants. However, pharmacological blockade of the hcrt type 1 receptor (hcrt-R1) before restraint stress restored the REMS increase in 5-HTT-/- mice. In line with this finding, 5-HTT-/- mutants displayed after restraint stress higher long-lasting activation of hypothalamic preprohcrt neurons than wild-type mice and elevated levels of the hcrt-1 peptide and the hcrt-R1 mRNA in the anterior raphe area. Thus, hypocretinergic neurotransmission was enhanced by stress in 5-HTT -/- mice. Furthermore, in 5-HTT-/- but not wild-type mice, hypothalamic levels of the 5-HT metabolite 5-hydroxyindole acetic acid significantly increased after restraint stress, indicating a marked enhancement of serotonergic neurotransmission in mutants. Altogether, our data show that increased serotonergic-and in turn hypocretinergic-neurotransmissions exert an inhibitory influence on stress-induced delayed REMS. We propose that the direct interactions between hcrt neurons in the hypothalamus and 5-HT neurons in the anterior raphe nuclei account, at least in part, for the adaptive sleep-wakefulness regulations triggered by acute stress.
UR - http://www.scopus.com/inward/record.url?scp=71849099097&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=71849099097&partnerID=8YFLogxK
U2 - 10.1523/JNEUROSCI.3138-09.2009
DO - 10.1523/JNEUROSCI.3138-09.2009
M3 - Article
C2 - 20007481
AN - SCOPUS:71849099097
SN - 0270-6474
VL - 29
SP - 15575
EP - 15585
JO - Journal of Neuroscience
JF - Journal of Neuroscience
IS - 49
ER -