Age-related macular degeneration phenotypes are associated with increased tumor necrosis-alpha and subretinal immune cells in aged Cxcr5 knockout mice

Hu Huang, Ying Liu, Lei Wang, Wen Li

Research output: Contribution to journalArticle

Abstract

The role of chemokine receptor in age-related macular degeneration (AMD) remains elusive. The objective of this study is to investigate the role of chemokine receptor Cxcr5 in the pathogenesis of AMD. Cxcr5 gene expression levels (mRNA and protein) are higher in the retina and retinal pigment epithelium (RPE) of aged C57BL/6 wild type mice than younger ones. Vascular and glial cells express Cxcr5 and its ligand Cxcl13 in mouse retina. Aged Cxcr5 knockout (-/-) mice develop both early and late AMD-like pathological features. White and yellow spots, which look like drusen in humans, were identified with fundscopic examination. Drusen-like sub-RPE deposits with dome-shaped morphology were characterized on the sections. RPE vacuolization, swelling, and sub-RPE basal deposits were illustrated with light and transmission electron microscope (TEM). TEM further illustrated degenerated and disorganized RPE basal infoldings, phagosomes and melanosomes inside RPE, as well as abnormal photoreceptor outer segments. Lipofuscin granules and lipid droplets in the subretinal space, RPE, and choroid were revealed with fluorescence microscope and oil-red-O staining. Increased IgG in RPE/choroid were determined with Western blots (WB). WB and immunofluorescence staining determined RPE zona occuldens (ZO)-1 protein reduction and abnormal subcellular localization. TUNEL staining, outer nuclear layer (ONL) measurement and electroretinogram (ERG) recording indicated that photoreceptors underwent apoptosis, degeneration, and functional impairment. Additionally, spontaneous neovascularization (NV)-like lesions develop in the subretinal space of aged Cxcr5-/- mice. The underlying mechanisms are associated with increased subretinal F4/80+ immune cells, some of which contain RPE marker RPE65, and up-regulation of the multifunctional cytokine tumor necrosis factor-alpha (TNF-α) in RPE/choroid and retina. These findings suggest that Cxcr5 itself may be involved in the protection of RPE and retinal cells during aging and its loss may lead to AMD-like pathological changes in aged mice.

Original languageEnglish (US)
Article numbere0173716
JournalPLoS One
Volume12
Issue number3
DOIs
StatePublished - Mar 1 2017

Fingerprint

Retinal Pigments
Retinal Pigment Epithelium
Macular Degeneration
Knockout Mice
Tumors
necrosis
Necrosis
epithelium
pigments
Phenotype
phenotype
neoplasms
mice
Neoplasms
cells
Choroid
retina
Retina
transmission electron microscopes
Chemokine Receptors

ASJC Scopus subject areas

  • Medicine(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)

Cite this

Age-related macular degeneration phenotypes are associated with increased tumor necrosis-alpha and subretinal immune cells in aged Cxcr5 knockout mice. / Huang, Hu; Liu, Ying; Wang, Lei; Li, Wen.

In: PLoS One, Vol. 12, No. 3, e0173716, 01.03.2017.

Research output: Contribution to journalArticle

@article{650f7145bdf44c518f65359d97832f2a,
title = "Age-related macular degeneration phenotypes are associated with increased tumor necrosis-alpha and subretinal immune cells in aged Cxcr5 knockout mice",
abstract = "The role of chemokine receptor in age-related macular degeneration (AMD) remains elusive. The objective of this study is to investigate the role of chemokine receptor Cxcr5 in the pathogenesis of AMD. Cxcr5 gene expression levels (mRNA and protein) are higher in the retina and retinal pigment epithelium (RPE) of aged C57BL/6 wild type mice than younger ones. Vascular and glial cells express Cxcr5 and its ligand Cxcl13 in mouse retina. Aged Cxcr5 knockout (-/-) mice develop both early and late AMD-like pathological features. White and yellow spots, which look like drusen in humans, were identified with fundscopic examination. Drusen-like sub-RPE deposits with dome-shaped morphology were characterized on the sections. RPE vacuolization, swelling, and sub-RPE basal deposits were illustrated with light and transmission electron microscope (TEM). TEM further illustrated degenerated and disorganized RPE basal infoldings, phagosomes and melanosomes inside RPE, as well as abnormal photoreceptor outer segments. Lipofuscin granules and lipid droplets in the subretinal space, RPE, and choroid were revealed with fluorescence microscope and oil-red-O staining. Increased IgG in RPE/choroid were determined with Western blots (WB). WB and immunofluorescence staining determined RPE zona occuldens (ZO)-1 protein reduction and abnormal subcellular localization. TUNEL staining, outer nuclear layer (ONL) measurement and electroretinogram (ERG) recording indicated that photoreceptors underwent apoptosis, degeneration, and functional impairment. Additionally, spontaneous neovascularization (NV)-like lesions develop in the subretinal space of aged Cxcr5-/- mice. The underlying mechanisms are associated with increased subretinal F4/80+ immune cells, some of which contain RPE marker RPE65, and up-regulation of the multifunctional cytokine tumor necrosis factor-alpha (TNF-α) in RPE/choroid and retina. These findings suggest that Cxcr5 itself may be involved in the protection of RPE and retinal cells during aging and its loss may lead to AMD-like pathological changes in aged mice.",
author = "Hu Huang and Ying Liu and Lei Wang and Wen Li",
year = "2017",
month = "3",
day = "1",
doi = "10.1371/journal.pone.0173716",
language = "English (US)",
volume = "12",
journal = "PLoS One",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "3",

}

TY - JOUR

T1 - Age-related macular degeneration phenotypes are associated with increased tumor necrosis-alpha and subretinal immune cells in aged Cxcr5 knockout mice

AU - Huang, Hu

AU - Liu, Ying

AU - Wang, Lei

AU - Li, Wen

PY - 2017/3/1

Y1 - 2017/3/1

N2 - The role of chemokine receptor in age-related macular degeneration (AMD) remains elusive. The objective of this study is to investigate the role of chemokine receptor Cxcr5 in the pathogenesis of AMD. Cxcr5 gene expression levels (mRNA and protein) are higher in the retina and retinal pigment epithelium (RPE) of aged C57BL/6 wild type mice than younger ones. Vascular and glial cells express Cxcr5 and its ligand Cxcl13 in mouse retina. Aged Cxcr5 knockout (-/-) mice develop both early and late AMD-like pathological features. White and yellow spots, which look like drusen in humans, were identified with fundscopic examination. Drusen-like sub-RPE deposits with dome-shaped morphology were characterized on the sections. RPE vacuolization, swelling, and sub-RPE basal deposits were illustrated with light and transmission electron microscope (TEM). TEM further illustrated degenerated and disorganized RPE basal infoldings, phagosomes and melanosomes inside RPE, as well as abnormal photoreceptor outer segments. Lipofuscin granules and lipid droplets in the subretinal space, RPE, and choroid were revealed with fluorescence microscope and oil-red-O staining. Increased IgG in RPE/choroid were determined with Western blots (WB). WB and immunofluorescence staining determined RPE zona occuldens (ZO)-1 protein reduction and abnormal subcellular localization. TUNEL staining, outer nuclear layer (ONL) measurement and electroretinogram (ERG) recording indicated that photoreceptors underwent apoptosis, degeneration, and functional impairment. Additionally, spontaneous neovascularization (NV)-like lesions develop in the subretinal space of aged Cxcr5-/- mice. The underlying mechanisms are associated with increased subretinal F4/80+ immune cells, some of which contain RPE marker RPE65, and up-regulation of the multifunctional cytokine tumor necrosis factor-alpha (TNF-α) in RPE/choroid and retina. These findings suggest that Cxcr5 itself may be involved in the protection of RPE and retinal cells during aging and its loss may lead to AMD-like pathological changes in aged mice.

AB - The role of chemokine receptor in age-related macular degeneration (AMD) remains elusive. The objective of this study is to investigate the role of chemokine receptor Cxcr5 in the pathogenesis of AMD. Cxcr5 gene expression levels (mRNA and protein) are higher in the retina and retinal pigment epithelium (RPE) of aged C57BL/6 wild type mice than younger ones. Vascular and glial cells express Cxcr5 and its ligand Cxcl13 in mouse retina. Aged Cxcr5 knockout (-/-) mice develop both early and late AMD-like pathological features. White and yellow spots, which look like drusen in humans, were identified with fundscopic examination. Drusen-like sub-RPE deposits with dome-shaped morphology were characterized on the sections. RPE vacuolization, swelling, and sub-RPE basal deposits were illustrated with light and transmission electron microscope (TEM). TEM further illustrated degenerated and disorganized RPE basal infoldings, phagosomes and melanosomes inside RPE, as well as abnormal photoreceptor outer segments. Lipofuscin granules and lipid droplets in the subretinal space, RPE, and choroid were revealed with fluorescence microscope and oil-red-O staining. Increased IgG in RPE/choroid were determined with Western blots (WB). WB and immunofluorescence staining determined RPE zona occuldens (ZO)-1 protein reduction and abnormal subcellular localization. TUNEL staining, outer nuclear layer (ONL) measurement and electroretinogram (ERG) recording indicated that photoreceptors underwent apoptosis, degeneration, and functional impairment. Additionally, spontaneous neovascularization (NV)-like lesions develop in the subretinal space of aged Cxcr5-/- mice. The underlying mechanisms are associated with increased subretinal F4/80+ immune cells, some of which contain RPE marker RPE65, and up-regulation of the multifunctional cytokine tumor necrosis factor-alpha (TNF-α) in RPE/choroid and retina. These findings suggest that Cxcr5 itself may be involved in the protection of RPE and retinal cells during aging and its loss may lead to AMD-like pathological changes in aged mice.

UR - http://www.scopus.com/inward/record.url?scp=85015173530&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85015173530&partnerID=8YFLogxK

U2 - 10.1371/journal.pone.0173716

DO - 10.1371/journal.pone.0173716

M3 - Article

C2 - 28282423

AN - SCOPUS:85015173530

VL - 12

JO - PLoS One

JF - PLoS One

SN - 1932-6203

IS - 3

M1 - e0173716

ER -