ADP-ribosyltransferase activity of mono- and multi-(ADP-ribosylated) choleragen.

J. Moss, S. J. Stanley, P. A. Watkins, M. Vaughan

Research output: Contribution to journalArticlepeer-review

23 Scopus citations


Choleragen (cholera toxin) catalyzed the NAD-dependent auto-ADP-ribosyltation of its A1 peptide. The number of ADP-ribose moieties incorporated into ech A1 peptide was dependent on incubation conditions and time as well as toxin concentration. There was no evidence for the formation of poly(ADP-ribosylated) toxin. The formation of mono- and multi-(ADP-ribosylated) A1 peptides was prevented by the addition of arginine, an alternative ADP-ribose acceptor. Triton X-100 polyacrylamide gel electrophoresis separated the A1 peptide of choleragen from the B complex and multi-(ADP-ribosylated) A1 peptides from unmodified A1. The A1 peptides ADP-ribosylated in the presence of [32P]NAD contained approximately 1, 2, or 3 ADP-ribose molecules/23,500-dalton units; under the conditions used for electrophoresis, the mobilities of the A1 peptides were enhanced by incorporation of ADP-ribose. The mono- and multi-(ADP-ribosylated) A1 peptides catalyzed the NAD-dependent ADP-ribosylation of arginine methyl ester. The turnover numbers of the mono- and multi-(ADP-ribosylated) A1 peptides were consistently 30 to 50% higher than that of the A1 peptide from native toxin.

Original languageEnglish (US)
Pages (from-to)7835-7837
Number of pages3
JournalJournal of Biological Chemistry
Issue number16
StatePublished - Aug 25 1980
Externally publishedYes

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology


Dive into the research topics of 'ADP-ribosyltransferase activity of mono- and multi-(ADP-ribosylated) choleragen.'. Together they form a unique fingerprint.

Cite this