Adiponectin selectively inhibits oxytocin neurons of the paraventricular nucleus of the hypothalamus

Ted D. Hoyda, Mark Fry, Rexford S. Ahima, Alastair V. Ferguson

Research output: Contribution to journalArticlepeer-review


Adiponectin is an adipocyte derived hormone which acts in the brain to modulate energy homeostasis and autonomic function. The paraventricular nucleus of the hypothalamus (PVN) which plays a key role in controlling pituitary hormone secretion has been suggested to be a central target for adiponectin actions. A number of hormones produced by PVN neurons have been implicated in the regulation of energy homeostasis including oxytocin, corticotropin releasing hormone and thyrotropin releasing hormone. In the present study we investigated the role of adiponectin in controlling the excitability of magnocellular (MNC - oxytocin or vasopressin secreting) neurons within the PVN. Using RT-PCR techniques we have shown expression of both adiponectin receptors in the PVN. Patch clamp recordings from MNC neurons in hypothalamic slices have also identified mixed (27% hyperpolarization, 42% depolarization) effects of adiponectin in modulating the excitability of the majority of MNC neurons tested. These effects are maintained when cells are placed in synaptic isolation using tetrodotoxin. Additionally we combined electrophysiological recordings with single cell RT-PCR to examine the actions of adiponectin on MNC neurons which expressed oxytocin only, vasopressin only, or both oxytocin and vasopressin mRNA and assess the profile of receptor expression in these subgroups. Adiponectin was found to hyperpolarize 100% of oxytocin neurons tested (n = 6), while vasopressin cells, while all affected (n = 6), showed mixed responses. Further analysis indicates oxytocin neurons express both receptors (6/7) while vasopressin neurons express either both receptors (3/8) or one receptor (5/8). In contrast 6/6 oxytocin/vasopressin neurons were unaffected by adiponectin. Co-expressing oxytocin and vasopressin neurons express neither receptor (4/6). The results presented in this study suggest that adiponectin plays specific roles in controlling the excitability oxytocin secreting neurons, actions which correlate with the current literature showing increased oxytocin secretion in the obese population.

Original languageEnglish (US)
Pages (from-to)805-816
Number of pages12
JournalJournal of Physiology
Issue number3
StatePublished - Dec 15 2007
Externally publishedYes

ASJC Scopus subject areas

  • Physiology


Dive into the research topics of 'Adiponectin selectively inhibits oxytocin neurons of the paraventricular nucleus of the hypothalamus'. Together they form a unique fingerprint.

Cite this