TY - JOUR
T1 - Adipogenesis is differentially impaired by thyroid hormone receptor mutant isoforms
AU - Mishra, Alok
AU - Zhu, Xu Guang
AU - Ge, Kai
AU - Cheng, Sheue Yann
N1 - Copyright:
Copyright 2010 Elsevier B.V., All rights reserved.
PY - 2010/4
Y1 - 2010/4
N2 - To understand the roles of thyroid hormone receptors (TRs) in adipogenesis, we adopted a loss-of-function approach. We generated 3T3-L1 cells stably expressing either TRα1 mutant (TRα1PV) or TRβ1 mutant (TRβ1PV). TRα1PV and TRβ1PV are dominant negative mutations with a frameshift in the C-terminal amino acids. In control cells, the thyroid hormone, tri-iodothyronine (T3), induced a 2.5-fold increase in adipogenesis in 3T3-L1 cells, as demonstrated by increased lipid droplets. This increase was mediated by T3-induced expression of the peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα), which are master regulators of adipogenesis at both the mRNA and protein levels. In 3T3-L1 cells stably expressing TRα1PV (L1-α1PV cells) or TRβ1PV (L1-β1PV cells), adipogenesis was reduced 94 or 54% respectively, indicative of differential inhibitory activity of mutant TR isoforms. Concordantly, the expression of PPARγ and C/EBPα at the mRNA and protein levels was more repressed in L1-α1PV cells than in L1-β1PV cells. In addition, the expression of PPARγ downstream target genes involved in fatty acid synthesis - the lipoprotein lipase (Lpl) and aP2 involved in adipogenesis - was more inhibited by TRα1PV than by TRβ1PV. Chromatin immunoprecipitation assays showed that TRα1PV was more avidly recruited than TRβ1PV to the promoter to preferentially block the expression of the C/ebpα gene. Taken together, these data indicate that impaired adipogenesis by mutant TR is isoform dependent. The finding that induction of adipogenesis is differentially regulated by TR isoforms suggests that TR isoform-specific ligands could be designed for therapeutic intervention for lipid abnormalities.
AB - To understand the roles of thyroid hormone receptors (TRs) in adipogenesis, we adopted a loss-of-function approach. We generated 3T3-L1 cells stably expressing either TRα1 mutant (TRα1PV) or TRβ1 mutant (TRβ1PV). TRα1PV and TRβ1PV are dominant negative mutations with a frameshift in the C-terminal amino acids. In control cells, the thyroid hormone, tri-iodothyronine (T3), induced a 2.5-fold increase in adipogenesis in 3T3-L1 cells, as demonstrated by increased lipid droplets. This increase was mediated by T3-induced expression of the peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα), which are master regulators of adipogenesis at both the mRNA and protein levels. In 3T3-L1 cells stably expressing TRα1PV (L1-α1PV cells) or TRβ1PV (L1-β1PV cells), adipogenesis was reduced 94 or 54% respectively, indicative of differential inhibitory activity of mutant TR isoforms. Concordantly, the expression of PPARγ and C/EBPα at the mRNA and protein levels was more repressed in L1-α1PV cells than in L1-β1PV cells. In addition, the expression of PPARγ downstream target genes involved in fatty acid synthesis - the lipoprotein lipase (Lpl) and aP2 involved in adipogenesis - was more inhibited by TRα1PV than by TRβ1PV. Chromatin immunoprecipitation assays showed that TRα1PV was more avidly recruited than TRβ1PV to the promoter to preferentially block the expression of the C/ebpα gene. Taken together, these data indicate that impaired adipogenesis by mutant TR is isoform dependent. The finding that induction of adipogenesis is differentially regulated by TR isoforms suggests that TR isoform-specific ligands could be designed for therapeutic intervention for lipid abnormalities.
UR - http://www.scopus.com/inward/record.url?scp=77950228944&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77950228944&partnerID=8YFLogxK
U2 - 10.1677/JME-09-0137
DO - 10.1677/JME-09-0137
M3 - Article
C2 - 20080985
AN - SCOPUS:77950228944
VL - 44
SP - 247
EP - 255
JO - Journal of Molecular Endocrinology
JF - Journal of Molecular Endocrinology
SN - 0952-5041
IS - 4
ER -