TY - JOUR
T1 - Adenosine-sensitive phosphoinositide turnover in a newly established renal cell line
AU - Arend, L. J.
AU - Handler, J. S.
AU - Rhim, J. S.
AU - Gusovsky, F.
AU - Spielman, W. S.
N1 - Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 1989
Y1 - 1989
N2 - To aid in characterizing adenosine receptors in renal cells, primary cultures of rabbit cortical collecting tubule (RCCT) cells were infected with an adenovirus 12-simian virus 40 hybrid, resulting in a continuous cell line. The cells, designated RCCT-28A, retained their epithelial morphology and reacted with a monoclonal antibody specific for rabbit collecting tubule. Adenosine 3',5'-cyclic monophosphate (cAMP) accumulation was stimulated by vasopresin (AVP), isoproterenol, prostaglandin E2 (PGE2), calcitonin, parathyroid hormone, and a potent adenosine A1- and A2-receptor agonist, 5'-N-ethylcarboxamidoadenosine (NECA). A more selective adenosine A1-receptor agonist, N6-cyclohexyladenosine (CHA) inhibited basal and AVP-stimulated cAMP accumulation. Cytosolic free calcium was transiently elevated by bradykinin, PGE2, NECA, and CHA. To examine the mechanism by which adenosine analogues increase intracellular free calcium, phosphoinositide (PI) turnover was assessed in the 28A cells after labeling with myo-[3H]inositol. NECA and CHA increased [3H]inositol phosphate formation with an approximate half-maximal effective concentration of 0.1 μM for both analogues. The increase in PI turnover was blocked by the selective adenosine A1-receptor antagonist, 8-cyclopentyl-1,3-dipropylxanthine and pretreatment of the 28A cells with pertussis toxin. These results suggest that adenosine analogues increase cytosolic free calcium by stimulating PI turnover.
AB - To aid in characterizing adenosine receptors in renal cells, primary cultures of rabbit cortical collecting tubule (RCCT) cells were infected with an adenovirus 12-simian virus 40 hybrid, resulting in a continuous cell line. The cells, designated RCCT-28A, retained their epithelial morphology and reacted with a monoclonal antibody specific for rabbit collecting tubule. Adenosine 3',5'-cyclic monophosphate (cAMP) accumulation was stimulated by vasopresin (AVP), isoproterenol, prostaglandin E2 (PGE2), calcitonin, parathyroid hormone, and a potent adenosine A1- and A2-receptor agonist, 5'-N-ethylcarboxamidoadenosine (NECA). A more selective adenosine A1-receptor agonist, N6-cyclohexyladenosine (CHA) inhibited basal and AVP-stimulated cAMP accumulation. Cytosolic free calcium was transiently elevated by bradykinin, PGE2, NECA, and CHA. To examine the mechanism by which adenosine analogues increase intracellular free calcium, phosphoinositide (PI) turnover was assessed in the 28A cells after labeling with myo-[3H]inositol. NECA and CHA increased [3H]inositol phosphate formation with an approximate half-maximal effective concentration of 0.1 μM for both analogues. The increase in PI turnover was blocked by the selective adenosine A1-receptor antagonist, 8-cyclopentyl-1,3-dipropylxanthine and pretreatment of the 28A cells with pertussis toxin. These results suggest that adenosine analogues increase cytosolic free calcium by stimulating PI turnover.
UR - http://www.scopus.com/inward/record.url?scp=0024352143&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0024352143&partnerID=8YFLogxK
U2 - 10.1152/ajprenal.1989.256.6.f1067
DO - 10.1152/ajprenal.1989.256.6.f1067
M3 - Article
C2 - 2472075
AN - SCOPUS:0024352143
SN - 0363-6127
VL - 256
SP - F1067-F1074
JO - American Journal of Physiology - Renal Fluid and Electrolyte Physiology
JF - American Journal of Physiology - Renal Fluid and Electrolyte Physiology
IS - 6 (25/6)
ER -