Activation of TRPV1 by capsaicin induces functional Kinin B1 receptor in rat spinal cord microglia

Sébastien Talbot, Jenny P. Dias, Karim Lahjouji, Maurício R. Bogo, Maria M. Campos, Pierrette Gaudreau, Réjean Couture

Research output: Contribution to journalArticlepeer-review

30 Scopus citations

Abstract

Background: The kinin B1 receptor (B1R) is upregulated by pro-inflammatory cytokines and oxydative stress, which are enhanced by transient receptor potential vanilloid subtype 1 (TRPV1) activation. To examine the link between TRPV1 and B1R in inflammatory pain, this study aimed to determine the ability of TRPV1 to regulate microglial B1R expression in the spinal cord dorsal horn, and the underlying mechanism.Methods: B1R expression (mRNA, protein and binding sites) was measured in cervical, thoracic and lumbar spinal cord in response to TRPV1 activation by systemic capsaicin (1-50 mg/kg, s.c) in rats pre-treated with TRPV1 antagonists (capsazepine or SB-366791), the antioxidant N-acetyl-L-cysteine (NAC), or vehicle. B1R function was assessed using a tail-flick test after intrathecal (i.t.) injection of a selective B1R agonist (des-Arg9-BK), and its microglial localization was investigated by confocal microscopy with the selective fluorescent B1R agonist, [Nα-bodipy]-des-Arg9-BK. The effect of i.t. capsaicin (1 μg/site) was also investigated.Results: Capsaicin (10 to 50 mg/kg, s.c.) enhanced time-dependently (0-24h) B1R mRNA levels in the lumbar spinal cord; this effect was prevented by capsazepine (10 mg/kg, i.p.; 10 μg/site, i.t.) and SB-366791 (1 mg/kg, i.p.; 30 μg/site, i.t.). Increases of B1R mRNA were correlated with IL-1β mRNA levels, and they were significantly less in cervical and thoracic spinal cord. Intrathecal capsaicin (1 μg/site) also enhanced B1R mRNA in lumbar spinal cord. NAC (1 g/kg/d × 7 days) prevented B1R up-regulation, superoxide anion production and NF-kB activation induced by capsaicin (15 mg/kg). Des-Arg9-BK (9.6 nmol/site, i.t.) decreased by 25-30% the nociceptive threshold at 1 min post-injection in capsaicin-treated rats (10-50 mg/kg) while it was without effect in control rats. Des-Arg9-BK-induced thermal hyperalgesia was blocked by capsazepine, SB-366791 and by antagonists/inhibitors of B1R (SSR240612, 10 mg/kg, p.o.), glutamate NMDA receptor (DL-AP5, 10 μg/site, i.t.), substance P NK-1 receptor (RP-67580, 10 μg/site, i.t.) and nitric oxide synthase (L-NNA, 10 μg/site, i.t.). The B1R fluorescent agonist was co-localized with an immunomarker of microglia (Iba-1) in spinal cord dorsal horn of capsaicin-treated rats.Conclusion: This study highlights a new mechanism for B1R induction via TRPV1 activation and establishes a link between these two pro-nociceptive receptors in inflammatory pain.

Original languageEnglish (US)
Article number498
JournalJournal of Neuroinflammation
Volume9
DOIs
StatePublished - Jan 20 2012
Externally publishedYes

Keywords

  • B1 receptors
  • Bradykinin
  • Capsaicin
  • Oxidative stress
  • TRPV1
  • Thermal hyperalgesia

ASJC Scopus subject areas

  • General Neuroscience
  • Immunology
  • Neurology
  • Cellular and Molecular Neuroscience

Fingerprint

Dive into the research topics of 'Activation of TRPV1 by capsaicin induces functional Kinin B1 receptor in rat spinal cord microglia'. Together they form a unique fingerprint.

Cite this