Activation Domains from Both Monomers Contribute to Transcriptional Stimulation by Sterol Regulatory Element-binding Protein Dimers

Shrimati Datta, Timothy Osborne

Research output: Contribution to journalArticle

Abstract

Sterol regulatory element-binding proteins (SREBPs) are basic helix-loop-helix leucine zipper proteins that act as dimers to activate genes in lipid metabolism. Three SREBP isoforms, 1a, 1c, and 2, are expressed at varying levels in different tissues. Thus, homo- and heterodimers probably contribute to overall SREBP activity. No studies have directly evaluated the formation or activation properties of SREBP homo- and heterodimers. Studies with overexpressed SREBP monomers are inconclusive regarding the function of a particular SREBP dimer because of potential dimerization with endogenous proteins. To assess activation by a particular SREBP dimer, we fused DNA encoding individual monomers together via a predicted flexible polypeptide tether. Tethered SREBP dimers bound DNA equivalently to the monomeric proteins and were resistant to dominant negative SREBP-1 inhibition, confirming preferential formation of intramolecular dimers. Tethered SREBP-1a and -2 homodimers, similar to the monomeric forms, activated target genes more robustly than tethered SREBP-1c homodimers. A forced SREBP-1a/2 heterodimer had similar activity to the respective homodimers. However, SREBP-1c in a heterodimer with either SREBP-1a or -2 attenuated the activity relative to the SREBP-1a or -2 homodimers. These experiments provide some of the first data showing that the integrity of both activation domains in a dimeric transcription factor is required for maximal activity. In addition, the results support a model where changes in SREBP-1c protein expression that occur in response to insulin signaling and liver X receptor signaling would be predicted to increase or decrease overall SREBP activity in a tissue-specific fashion depending on the initial fractional contribution of SREBP-1c to total cellular levels of SREBP.

Original languageEnglish (US)
Pages (from-to)3338-3345
Number of pages8
JournalJournal of Biological Chemistry
Volume280
Issue number5
DOIs
StatePublished - Feb 4 2005
Externally publishedYes

Fingerprint

Sterol Regulatory Element Binding Proteins
Sterol Regulatory Element Binding Protein 1
Dimers
Monomers
Chemical activation
Sterol Regulatory Element Binding Protein 2
Proteins
Genes
Tissue
Leucine Zippers
Dimerization
DNA
Lipid Metabolism
Liver
Protein Isoforms
Transcription Factors

ASJC Scopus subject areas

  • Biochemistry

Cite this

@article{4353da02d68e4cbea568403110990f67,
title = "Activation Domains from Both Monomers Contribute to Transcriptional Stimulation by Sterol Regulatory Element-binding Protein Dimers",
abstract = "Sterol regulatory element-binding proteins (SREBPs) are basic helix-loop-helix leucine zipper proteins that act as dimers to activate genes in lipid metabolism. Three SREBP isoforms, 1a, 1c, and 2, are expressed at varying levels in different tissues. Thus, homo- and heterodimers probably contribute to overall SREBP activity. No studies have directly evaluated the formation or activation properties of SREBP homo- and heterodimers. Studies with overexpressed SREBP monomers are inconclusive regarding the function of a particular SREBP dimer because of potential dimerization with endogenous proteins. To assess activation by a particular SREBP dimer, we fused DNA encoding individual monomers together via a predicted flexible polypeptide tether. Tethered SREBP dimers bound DNA equivalently to the monomeric proteins and were resistant to dominant negative SREBP-1 inhibition, confirming preferential formation of intramolecular dimers. Tethered SREBP-1a and -2 homodimers, similar to the monomeric forms, activated target genes more robustly than tethered SREBP-1c homodimers. A forced SREBP-1a/2 heterodimer had similar activity to the respective homodimers. However, SREBP-1c in a heterodimer with either SREBP-1a or -2 attenuated the activity relative to the SREBP-1a or -2 homodimers. These experiments provide some of the first data showing that the integrity of both activation domains in a dimeric transcription factor is required for maximal activity. In addition, the results support a model where changes in SREBP-1c protein expression that occur in response to insulin signaling and liver X receptor signaling would be predicted to increase or decrease overall SREBP activity in a tissue-specific fashion depending on the initial fractional contribution of SREBP-1c to total cellular levels of SREBP.",
author = "Shrimati Datta and Timothy Osborne",
year = "2005",
month = "2",
day = "4",
doi = "10.1074/jbc.M411222200",
language = "English (US)",
volume = "280",
pages = "3338--3345",
journal = "Journal of Biological Chemistry",
issn = "0021-9258",
publisher = "American Society for Biochemistry and Molecular Biology Inc.",
number = "5",

}

TY - JOUR

T1 - Activation Domains from Both Monomers Contribute to Transcriptional Stimulation by Sterol Regulatory Element-binding Protein Dimers

AU - Datta, Shrimati

AU - Osborne, Timothy

PY - 2005/2/4

Y1 - 2005/2/4

N2 - Sterol regulatory element-binding proteins (SREBPs) are basic helix-loop-helix leucine zipper proteins that act as dimers to activate genes in lipid metabolism. Three SREBP isoforms, 1a, 1c, and 2, are expressed at varying levels in different tissues. Thus, homo- and heterodimers probably contribute to overall SREBP activity. No studies have directly evaluated the formation or activation properties of SREBP homo- and heterodimers. Studies with overexpressed SREBP monomers are inconclusive regarding the function of a particular SREBP dimer because of potential dimerization with endogenous proteins. To assess activation by a particular SREBP dimer, we fused DNA encoding individual monomers together via a predicted flexible polypeptide tether. Tethered SREBP dimers bound DNA equivalently to the monomeric proteins and were resistant to dominant negative SREBP-1 inhibition, confirming preferential formation of intramolecular dimers. Tethered SREBP-1a and -2 homodimers, similar to the monomeric forms, activated target genes more robustly than tethered SREBP-1c homodimers. A forced SREBP-1a/2 heterodimer had similar activity to the respective homodimers. However, SREBP-1c in a heterodimer with either SREBP-1a or -2 attenuated the activity relative to the SREBP-1a or -2 homodimers. These experiments provide some of the first data showing that the integrity of both activation domains in a dimeric transcription factor is required for maximal activity. In addition, the results support a model where changes in SREBP-1c protein expression that occur in response to insulin signaling and liver X receptor signaling would be predicted to increase or decrease overall SREBP activity in a tissue-specific fashion depending on the initial fractional contribution of SREBP-1c to total cellular levels of SREBP.

AB - Sterol regulatory element-binding proteins (SREBPs) are basic helix-loop-helix leucine zipper proteins that act as dimers to activate genes in lipid metabolism. Three SREBP isoforms, 1a, 1c, and 2, are expressed at varying levels in different tissues. Thus, homo- and heterodimers probably contribute to overall SREBP activity. No studies have directly evaluated the formation or activation properties of SREBP homo- and heterodimers. Studies with overexpressed SREBP monomers are inconclusive regarding the function of a particular SREBP dimer because of potential dimerization with endogenous proteins. To assess activation by a particular SREBP dimer, we fused DNA encoding individual monomers together via a predicted flexible polypeptide tether. Tethered SREBP dimers bound DNA equivalently to the monomeric proteins and were resistant to dominant negative SREBP-1 inhibition, confirming preferential formation of intramolecular dimers. Tethered SREBP-1a and -2 homodimers, similar to the monomeric forms, activated target genes more robustly than tethered SREBP-1c homodimers. A forced SREBP-1a/2 heterodimer had similar activity to the respective homodimers. However, SREBP-1c in a heterodimer with either SREBP-1a or -2 attenuated the activity relative to the SREBP-1a or -2 homodimers. These experiments provide some of the first data showing that the integrity of both activation domains in a dimeric transcription factor is required for maximal activity. In addition, the results support a model where changes in SREBP-1c protein expression that occur in response to insulin signaling and liver X receptor signaling would be predicted to increase or decrease overall SREBP activity in a tissue-specific fashion depending on the initial fractional contribution of SREBP-1c to total cellular levels of SREBP.

UR - http://www.scopus.com/inward/record.url?scp=13544277360&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=13544277360&partnerID=8YFLogxK

U2 - 10.1074/jbc.M411222200

DO - 10.1074/jbc.M411222200

M3 - Article

C2 - 15550381

AN - SCOPUS:13544277360

VL - 280

SP - 3338

EP - 3345

JO - Journal of Biological Chemistry

JF - Journal of Biological Chemistry

SN - 0021-9258

IS - 5

ER -