Accurate estimation of total intracranial volume in MRI using a multi-tasked image-to-image translation network

Mallika Singh, Eleanor Pahl, Shangxian Wang, Aaron Carass, Junghoon Lee, Jerry L. Prince

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Total intracranial volume (TIV) is the volume enclosed inside the cranium, inclusive of the meninges and the brain. TIV is extensively used to correct variations in inter-subject head size for the evaluation of neurodegen- erative diseases. In this work, we present an automatic method to generate a TIV mask from MR images while synthesizing a CT image to be used in subsequent analysis. In addition, we propose an alternative way to obtain ground truth TIV masks using a semi-manual approach, which results in significant time savings. We train a conditional generative adversarial network (cGAN) using 2D MR slices to realize our tasks. The quantitative evaluation showed that the model was able to synthesize CT and generate TIV masks that closely approximate the reference images. This study also provides a comparison of the described method against skull stripping tools that output a mask enclosing the cranial volume, using MRI scan. In particular, highlighting the deficiencies in using such tools to approximate the volume using MRI scan.

Original languageEnglish (US)
Title of host publicationMedical Imaging 2021
Subtitle of host publicationImage Processing
EditorsIvana Isgum, Bennett A. Landman
PublisherSPIE
ISBN (Electronic)9781510640214
DOIs
StatePublished - 2021
EventMedical Imaging 2021: Image Processing - Virtual, Online, United States
Duration: Feb 15 2021Feb 19 2021

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume11596
ISSN (Print)1605-7422

Conference

ConferenceMedical Imaging 2021: Image Processing
Country/TerritoryUnited States
CityVirtual, Online
Period2/15/212/19/21

Keywords

  • Human brain
  • Intracranial volume
  • MRI
  • Synthetic CT

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics
  • Biomaterials
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Accurate estimation of total intracranial volume in MRI using a multi-tasked image-to-image translation network'. Together they form a unique fingerprint.

Cite this