Accurate and efficient separation of left and right lungs from 3D CT scans: A generic hysteresis approach

Ziyue Xu, Ulas Bagci, Colleen Jonsson, Sanjay Jain, Daniel J. Mollura

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Separation of left and right lungs from binary segmentation is often necessary for quantitative image-based pulmonary disease evaluation. In this article, we present a new fully automated approach for accurate, robust, and efficient lung separation using 3-D CT scans. Our method follows a hysteresis setting that utilizes information from both lung regions and background gaps. First, original segmentation is separated by subtracting the gaps between left and right lungs, which are enhanced with Hessian filtering. Second, the 2-D separation manifold in 3-D image space is estimated based on the distance information from the two subsets. Finally, the separation manifold is projected back to the original segmentation in order to produce the separated lungs through optimization for addressing minor local variations. An evaluation on over 400 human and 100 small animal 3-D CT images with various abnormalities is performed. The proposed scheme successfully separated all connections on the candidate CT images. Using hysteresis mechanism, each phase is performed robustly and 3-D information is utilized to achieve a generic, efficient, and accurate solution.

Original languageEnglish (US)
Title of host publication2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages6036-6039
Number of pages4
ISBN (Electronic)9781424479290
DOIs
StatePublished - Nov 2 2014
Event2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014 - Chicago, United States
Duration: Aug 26 2014Aug 30 2014

Publication series

Name2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014

Other

Other2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014
CountryUnited States
CityChicago
Period8/26/148/30/14

Keywords

  • Hessian
  • Left and right lung separation
  • distance transform
  • hysteresis
  • lung segmentation

ASJC Scopus subject areas

  • Health Informatics
  • Computer Science Applications
  • Biomedical Engineering
  • Medicine(all)

Fingerprint Dive into the research topics of 'Accurate and efficient separation of left and right lungs from 3D CT scans: A generic hysteresis approach'. Together they form a unique fingerprint.

Cite this