Absence of G-protein activation by μ-opioid receptor agonists in the spinal cord of μ-opioid receptor knockout mice

Minoru Narita, Hirokazu Mizoguchi, Michiko Narita, Ichiro Sora, George R. Uhl, Leon F. Tseng

Research output: Contribution to journalArticlepeer-review

52 Scopus citations

Abstract

1. The ability of μ-opioid receptor agonists to activate G-proteins in the spinal cord of μ-opioid receptor knockout mice was examined by monitoring the binding to membranes of the nonhydrolyzable analogue of GTP, guanosine-5'-O-(3-[35S]thio)triphosphate ([35S]GTPγS). 2. In the receptor binding study, Scatchard analysis of [3H][D-Ala2,NHPhe4, Gly-ol]enkephalin ([3H]DAMGO; μ-opioid receptor ligand) binding revealed that the heterozygous μ-knockout mice displayed approximately 40% reduction in the number of μ-receptors as compared to the wild-type mice. The homozygous μ-knockout mice showed no detectable μ-binding sites. 3. The newly isolated μ-opioid peptides endomorphin-1 and -2, the synthetic selective μ-opioid receptor agonist DAMGO and the prototype of μ-opioid receptor agonist morphine each produced concentration-dependent increases in [35S]GTPγS binding in wild-type mice. This stimulation was reduced by 55-70% of the wild-type level in heterozygous, and virtually eliminated in homozygous knockout mice. 4. No differences in the [35S]GTPγS binding stimulated by specific δ1-([D-Pen2,5]enkephalin), δ2-([D-Ala2]deltorphin II) or κ1- (U50,488H) opioid receptor agonists were noted in mice of any of the three genotypes. 5. The data clearly indicate that μ-opioid receptor gene products play a key role in G-protein activation by endomorphins, DAMGO and morphine in the mouse spinal cord. They support the idea that μ-opioid receptor densities could be rate-limiting steps in the G-protein activation by μ-opioid receptor agonists in the spinal cord. These thus indicate a limited physiological μ-receptor reserve. Furthermore, little change in δ1-, D2- or κ1-opioid receptor-G-protein complex appears to accompany μ-opioid receptor gene deletions in this region.

Original languageEnglish (US)
Pages (from-to)451-456
Number of pages6
JournalBritish Journal of Pharmacology
Volume126
Issue number2
DOIs
StatePublished - 1999
Externally publishedYes

Keywords

  • Endomorphins
  • G-proteins
  • Homologous recombination
  • Knockout mice
  • Opioid peptides
  • Signal transduction
  • Spinal cord
  • μ-opioid receptors

ASJC Scopus subject areas

  • Pharmacology

Fingerprint

Dive into the research topics of 'Absence of G-protein activation by μ-opioid receptor agonists in the spinal cord of μ-opioid receptor knockout mice'. Together they form a unique fingerprint.

Cite this