Aberrant Functional Network Connectivity Transition Probability in Major Depressive Disorder

Elaheh Zendehrouh, Mohammad S.E. Sendi, Jing Sui, Zening Fu, Dongmei Zhi, Luxian Lv, Xiaohong Ma, Qing Ke, Xianbin Li, Chuanyue Wang, Christopher C. Abbott, Jessica A. Turner, Robyn L. Miller, Vince D. Calhoun

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

Major depressive disorder (MDD) is a common and serious mental disorder characterized by a persistent negative feeling and tremendous sadness. In recent decades, several studies used functional network connectivity (FNC), estimated from resting state functional magnetic resonance imaging (fMRI), to investigate the biological signature of MDD. However, the majority of them have ignored the temporal change of brain interaction by focusing on static FNC (sFNC). Dynamic functional network connectivity (dFNC) that explores temporal patterns of functional connectivity (FC) might provide additional information to its static counterpart. In the current study, by applying k-means clustering on dFNC of MDD and healthy subjects (HCs), we estimated 5 different states. Next, we use the hidden Markov model as a potential biomarker to differentiate the dFNC pattern of MDD patients from HCs. Comparing MDD and HC subjects' hidden Markov model (HMM) features, we have highlighted the role of transition probabilities between states as potential biomarkers and identified that transition probability from a lightly- connected state to highly connected one reduces as symptom severity increases in MDD subjects.Index Terms - Major depressive disorder, Dynamic functional network connectivity, Machine learning, Resting- state functional magnetic resonance imaging, Hidden Markov model.

Original languageEnglish (US)
Title of host publication42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society
Subtitle of host publicationEnabling Innovative Technologies for Global Healthcare, EMBC 2020
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1493-1496
Number of pages4
ISBN (Electronic)9781728119908
DOIs
StatePublished - Jul 2020
Event42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society, EMBC 2020 - Montreal, Canada
Duration: Jul 20 2020Jul 24 2020

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
Volume2020-July
ISSN (Print)1557-170X

Conference

Conference42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society, EMBC 2020
Country/TerritoryCanada
CityMontreal
Period7/20/207/24/20

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint

Dive into the research topics of 'Aberrant Functional Network Connectivity Transition Probability in Major Depressive Disorder'. Together they form a unique fingerprint.

Cite this