A tandem Di-hydrophobic motif mediates clathrin-dependent endocytosis via direct binding to the AP-2ασ2 subunits

Bernardo Ortega, Amanda K. Mason, Paul A. Welling

Research output: Contribution to journalArticlepeer-review

Abstract

Select plasma membrane proteins can be marked as cargo for inclusion into clathrin-coated pits by common internalization signals (e.g. YXXΦ, dileucine motifs, NPXY) that serve as universal recognition sites for the AP-2 adaptor complex or other clathrin-associated sorting proteins. However, some surface proteins, such as the Kir2.3 potassium channel, lack canonical signals but are still targeted for clathrin-dependent endocytosis. Here, we explore the mechanism. We found an unusual endocytic signal in Kir2.3 that is based on two consecutive pairs of hydrophobic residues. Characterized by the sequence ΦΦXΦΦ(a tandem di-hydrophobic (TDH) motif, where Φ is a hydrophobic amino acid), the signal shows no resemblance to other endocytic motifs, yet it directly interacts with AP-2 to target the Kir2.3 potassium channel into the endocytic pathway. We found that the tandem di-hydrophobic motif directly binds to the ασ2 subunits of AP-2, interacting within a large hydrophobic cleft that encompasses part of the docking site for di-Leu signals, but includes additional structures. These observations expand the repertoire of clathrin-dependent internalization signals and the ways in which AP-2 can coordinate endocytosis of cargo proteins.

Original languageEnglish (US)
Pages (from-to)26867-26875
Number of pages9
JournalJournal of Biological Chemistry
Volume287
Issue number32
DOIs
StatePublished - Aug 3 2012
Externally publishedYes

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Fingerprint Dive into the research topics of 'A tandem Di-hydrophobic motif mediates clathrin-dependent endocytosis via direct binding to the AP-2ασ2 subunits'. Together they form a unique fingerprint.

Cite this