A simulation study of the effect of phase-shift on dual gated myocardial perfusion ECT

Taek Soo Lee, Min Jae Park, Benjamin M.W. Tsui

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

We evaluated the effect of relative phase-shift of cardiac and respiratory (C&R) motions in myocardial perfusion (MP) ECT. Previously, we generated a set of realistic 3D XCAT (eXtended CArdiac Torso) phantoms that model simultaneous C&R motions for use in the study of new data acquisition methods and corrective image reconstruction techniques for improved gated MP ECT, including PET and SPECT. The respiratory motion (RM) over a respiration cycle was modeled using 24 equally-spaced time frames while the cardiac beating motion (CBM) over a cardiac cycle was divided into 48 equally-spaced time frames for each of the 24 RM phases. Almost noise-free projection datasets were generated separately from the heart, blood pool, lungs, liver, kidneys, stomach, gall bladder and remaining body at each of the 24x48 time points using Monte Carlo simulation techniques that include the effect of collimator detector response, photon attenuation and scatter. To demonstrate the effect of relative phase-shift, a typical 99mTc Sestamibi MP SPECT projection dataset were generated. They were then scaled and combined to model different degrees of relative C&R phase shifting and grouped into 6 respiratory-gates with 8 cardiac-gates. Each projection was reconstructed using a 3D OS-EM without and with attenuation correction using an averaged and phase-mismatched gated attenuation maps. The image artifacts of the reconstructed images were compared by visual inspection of the MP polar maps. The results showed significant changes of artifactual non-uniformity in the polar maps for off-phase of RM compared to those of CBM. The changes in the polar maps also demonstrated the effect of phase shifting accordingly. We conclude that the 4D XCAT phantom dataset with simultaneous C&R motions provides a powerful tool in the study of the effects of C&R motions with relative phase shifts, and development of C&R gating schemes and motion correction methods for improved ECT/CT imaging.

Original languageEnglish (US)
Title of host publication2011 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2011
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2728-2732
Number of pages5
ISBN (Print)9781467301183
DOIs
StatePublished - 2011
Externally publishedYes
Event2011 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2011 - Valencia, Spain
Duration: Oct 23 2011Oct 29 2011

Publication series

NameIEEE Nuclear Science Symposium Conference Record
ISSN (Print)1095-7863

Other

Other2011 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2011
Country/TerritorySpain
CityValencia
Period10/23/1110/29/11

ASJC Scopus subject areas

  • Radiation
  • Nuclear and High Energy Physics
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'A simulation study of the effect of phase-shift on dual gated myocardial perfusion ECT'. Together they form a unique fingerprint.

Cite this