A second mechanism employed by artemisinins to suppress Plasmodium falciparum hinges on inhibition of hematin crystallization

Wenchuan Ma, Victoria A. Balta, Rachel West, Katy N. Newlin, Ognjen S. Miljanić, David J. Sullivan, Peter G. Vekilov, Jeffrey D. Rimer

Research output: Contribution to journalArticlepeer-review

1 Scopus citations


Malaria is a pervasive disease that affects millions of lives each year in equatorial regions of the world. During the erythrocytic phase of the parasite life cycle, Plasmodium falciparum invades red blood cells, where it catabolizes hemoglobin and sequesters the released toxic heme as innocuous hemozoin crystals. Artemisinin (ART)-class drugs are activated in vivo by newly released heme, which creates a carboncentered radical that markedly reduces parasite density. Radical damage to parasite lipids and proteins is perceived to be ARTs' dominant mechanism of action. By contrast, quinoline-class antimalarials inhibit the formation of hemozoin and in this way suppress heme detoxification. Here, we combine malaria parasite assays and scanning probe microscopy of growing β-hematin crystals to elucidate an unexpected mechanism employed by two widely administered antimalarials, ART, and artesunate to subdue the erythrocytic phase of the parasite life cycle. We demonstrate that heme-drug adducts, produced after the radical activation of ARTs and largely believed to be benign bystanders, potently kills P. falciparum at low exogenous concentrations. We show that these adducts inhibit β-hematin crystallization and heme detoxification, a pathway which complements the deleterious effect of radicals generated via parent drug activation. Our findings reveal an irreversible mechanism of heme-ART adduct inhibition of heme crystallization, unique among antimalarials and common crystal growth inhibitors, that opens new avenues for evaluating drug dosing regimens and understanding growing resistance of P. falciparum to ART.

Original languageEnglish (US)
Article number100123
JournalJournal of Biological Chemistry
StatePublished - Jan 1 2021

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology


Dive into the research topics of 'A second mechanism employed by artemisinins to suppress Plasmodium falciparum hinges on inhibition of hematin crystallization'. Together they form a unique fingerprint.

Cite this