A randomized trial in a massive online open course shows people don't know what a statistically significant relationship looks like, but they can learn

Aaron Fisher, G. Brooke Anderson, Roger Peng, Jeff Leek

Research output: Contribution to journalArticlepeer-review

Abstract

Scatterplots are the most common way for statisticians, scientists, and the public to visually detect relationships between measured variables. At the same time, and despite widely publicized controversy, P-values remain the most commonly used measure to statistically justify relationships identified between variables. Here we measure the ability to detect statistically significant relationships from scatterplots in a randomized trial of 2,039 students in a statistics massive open online course (MOOC). Each subject was shown a randomset of scatterplots and asked to visually determine if the underlying relationships were statistically significant at the P < 0.05 level. Subjects correctly classified only 47.4% (95% CI [45.1%-49.7%]) of statistically significant relationships, and 74.6% (95% CI [72.5%-76.6%]) of non-significant relationships. Adding visual aids such as a best fit line or scatterplot smooth increased the probability a relationship was called significant, regardless of whether the relationship was actually significant. Classification of statistically significant relationships improved on repeat attempts of the survey, although classification of nonsignificant relationships did not. Our results suggest: (1) that evidence-based data analysis can be used to identify weaknesses in theoretical procedures in the hands of average users, (2) data analysts can be trained to improve detection of statistically significant results with practice, but (3) data analysts have incorrect intuition about what statistically significant relationships look like, particularly for small effects. We have built a web tool for people to compare scatterplots with their corresponding p-values which is available here: http://glimmer.rstudio.com/afisher/EDA/.

Original languageEnglish (US)
Article numbere589
JournalPeerJ
Volume2014
Issue number1
DOIs
StatePublished - 2014

Keywords

  • Data visualization
  • Education
  • Evidenced based data analysis
  • MOOC
  • Randomized trial
  • Statistical significance
  • Statistics
  • p-values

ASJC Scopus subject areas

  • Neuroscience(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)

Fingerprint Dive into the research topics of 'A randomized trial in a massive online open course shows people don't know what a statistically significant relationship looks like, but they can learn'. Together they form a unique fingerprint.

Cite this