A practical global distortion correction method for an image intensifier based x-ray fluoroscopy system

Luis F. Gutírrez, Cengizhan Ozturk, Elliot R. McVeigh, Robert J. Lederman

Research output: Contribution to journalArticle

Abstract

X-ray images acquired on systems with image intensifiers (II) exhibit characteristic distortion which is due to both external and internal factors. The distortion is dependent on the orientation of the II, a fact particularly relevant to II's mounted on C arms which have several degrees of freedom of motion. Previous descriptions of distortion correction strategies have relied on a dense sampling of the C-arm orientation space, and as such have been limited mostly to a single arc of the primary angle, α. We present a new method which smooths the trajectories of the segmented vertices of the grid phantom as a function of α prior to solving the two-dimensional warping problem. It also shows that the same residual errors of distortion correction could be achieved without fitting the trajectories of the grid vertices, but instead applying the previously described global method of distortion correction, followed by directly smoothing the values of the polynomial coefficients as functions of the C-arm orientation parameters. When this technique was applied to a series of test images at arbitrary α, the root-mean-square (RMS) residual error was 0.22 pixels. The new method was extended to three degrees of freedom of the C-arm motion: the primary angle, α; the secondary angle, β; and the source-to-intensifier distance, λ. Only 75 images were used to characterize the distortion for the following ranges: α, ±45° (Δα=22.5°); β, ±36° (Δβ=18°); λ, 98-118 cm (Δλ=10 cm). When evaluated on a series of test images acquired at arbitrary (α,β, λ), the RMS residual error was 0.33 pixels. This method is targeted at applications such as guidance of catheter-based interventions and treatment planning for brachytherapy, which require distortion-corrected images over a large range of C-arm orientations.

Original languageEnglish (US)
Pages (from-to)997-1007
Number of pages11
JournalMedical Physics
Volume35
Issue number3
DOIs
Publication statusPublished - 2008

    Fingerprint

Keywords

  • Angle dependent distortion correction
  • X-ray fluoroscopy
  • X-ray image intensifier

ASJC Scopus subject areas

  • Biophysics

Cite this