A new technique of ex vivo gene delivery of VEGF to wounds using genetically modified skin particles promotes wound angiogenesis

Taro Koyama, Florian Hackl, Pejman Aflaki, Juri Bergmann, Baraa Zuhaili, Emily Waisbren, Usha Govindarajulu, Feng Yao, Elof Eriksson

Research output: Contribution to journalArticle

Abstract

Background: Transplantation of genetically modified keratinocytes has been shown to accelerate wound healing. However, this method is labor-intensive and time-consuming. We have developed a new technique of intraoperative gene delivery to wounds that involves transplantation of transfected minced skin particles (MSPs) derived from harvested partial-thickness skin. Study Design: MSPs measuring 0.8 × 0.8 × 0.35 mm were created from a split-thickness skin graft of a pig. In vitro transfection was carried out with adenoviral LacZ (Ad-LacZ) for qualitative and adenoviral vascular endothelial growth factor (Ad-VEGF) for quantitative analysis. Transfected MSPs were transplanted to each of 2.5 × 2.5 cm full-thickness wounds on the dorsum of the pig. Nontransfected MSPs served as controls. Wound chambers were applied and injected with saline to create a wet environment. Results: LacZ expression was detected in migrating cells originating from MSPs both in vitro and in vivo. VEGF expression in the wound fluid of Ad-VEGF-MSP-transplanted wounds on each of days 2 to 4 (mean ± SEM 6.74 ± 1.89 ng/mL, day 2; 9.88 ± 2.27 ng/mL, day 3; 9.87 ± 1.28 ng/mL, day 4) was significantly higher (p < 0.0001) compared with wounds transplanted with either untransfected MSPs, Ad-LacZ-MSPs, or untransplanted controls. In vitro VEGF expression was significantly higher (p < 0.0001) in Ad-VEGF 1 × 1010 transfected MSPs compared with either Ad-VEGF 1 × 109 transfected MSPs or untransfected MSPs. Wounds transplanted with Ad-VEGF-MSPs showed significantly higher (p < 0.0001) numbers of newly formed blood vessels (12.6 ± 0.9 vessels/high power field [HPF]) compared with wounds transplanted with either Ad-LacZ-MSPs (4.4 ± 0.5 vessels/HPF) or untransfected MSPs (5.2 ± 0.7 vessels/HPF). All MSP-transplanted wounds (Ad-VEGF-MSPs, untransfected MSPs, Ad-LacZ-MSPs) showed significantly higher re-epithelialization compared with untransplanted wounds on days 10 and 14 (p < 0.0001). Conclusions: We demonstrated successful transfection of MSPs that can be transplanted to wounds as a source of gene-expressing cells. This technique can be used to deliver growth-modulating genes in wound healing.

Original languageEnglish (US)
Pages (from-to)340-348
Number of pages9
JournalJournal of the American College of Surgeons
Volume212
Issue number3
DOIs
StatePublished - Mar 1 2011
Externally publishedYes

Fingerprint

Vascular Endothelial Growth Factor A
Skin
Wounds and Injuries
Genes
Wound Healing
Transfection
Swine
Transplantation
Re-Epithelialization
Keratinocytes

ASJC Scopus subject areas

  • Surgery

Cite this

A new technique of ex vivo gene delivery of VEGF to wounds using genetically modified skin particles promotes wound angiogenesis. / Koyama, Taro; Hackl, Florian; Aflaki, Pejman; Bergmann, Juri; Zuhaili, Baraa; Waisbren, Emily; Govindarajulu, Usha; Yao, Feng; Eriksson, Elof.

In: Journal of the American College of Surgeons, Vol. 212, No. 3, 01.03.2011, p. 340-348.

Research output: Contribution to journalArticle

Koyama, Taro ; Hackl, Florian ; Aflaki, Pejman ; Bergmann, Juri ; Zuhaili, Baraa ; Waisbren, Emily ; Govindarajulu, Usha ; Yao, Feng ; Eriksson, Elof. / A new technique of ex vivo gene delivery of VEGF to wounds using genetically modified skin particles promotes wound angiogenesis. In: Journal of the American College of Surgeons. 2011 ; Vol. 212, No. 3. pp. 340-348.
@article{0e34e5956464480d9eb63dd01382ffc9,
title = "A new technique of ex vivo gene delivery of VEGF to wounds using genetically modified skin particles promotes wound angiogenesis",
abstract = "Background: Transplantation of genetically modified keratinocytes has been shown to accelerate wound healing. However, this method is labor-intensive and time-consuming. We have developed a new technique of intraoperative gene delivery to wounds that involves transplantation of transfected minced skin particles (MSPs) derived from harvested partial-thickness skin. Study Design: MSPs measuring 0.8 × 0.8 × 0.35 mm were created from a split-thickness skin graft of a pig. In vitro transfection was carried out with adenoviral LacZ (Ad-LacZ) for qualitative and adenoviral vascular endothelial growth factor (Ad-VEGF) for quantitative analysis. Transfected MSPs were transplanted to each of 2.5 × 2.5 cm full-thickness wounds on the dorsum of the pig. Nontransfected MSPs served as controls. Wound chambers were applied and injected with saline to create a wet environment. Results: LacZ expression was detected in migrating cells originating from MSPs both in vitro and in vivo. VEGF expression in the wound fluid of Ad-VEGF-MSP-transplanted wounds on each of days 2 to 4 (mean ± SEM 6.74 ± 1.89 ng/mL, day 2; 9.88 ± 2.27 ng/mL, day 3; 9.87 ± 1.28 ng/mL, day 4) was significantly higher (p < 0.0001) compared with wounds transplanted with either untransfected MSPs, Ad-LacZ-MSPs, or untransplanted controls. In vitro VEGF expression was significantly higher (p < 0.0001) in Ad-VEGF 1 × 1010 transfected MSPs compared with either Ad-VEGF 1 × 109 transfected MSPs or untransfected MSPs. Wounds transplanted with Ad-VEGF-MSPs showed significantly higher (p < 0.0001) numbers of newly formed blood vessels (12.6 ± 0.9 vessels/high power field [HPF]) compared with wounds transplanted with either Ad-LacZ-MSPs (4.4 ± 0.5 vessels/HPF) or untransfected MSPs (5.2 ± 0.7 vessels/HPF). All MSP-transplanted wounds (Ad-VEGF-MSPs, untransfected MSPs, Ad-LacZ-MSPs) showed significantly higher re-epithelialization compared with untransplanted wounds on days 10 and 14 (p < 0.0001). Conclusions: We demonstrated successful transfection of MSPs that can be transplanted to wounds as a source of gene-expressing cells. This technique can be used to deliver growth-modulating genes in wound healing.",
author = "Taro Koyama and Florian Hackl and Pejman Aflaki and Juri Bergmann and Baraa Zuhaili and Emily Waisbren and Usha Govindarajulu and Feng Yao and Elof Eriksson",
year = "2011",
month = "3",
day = "1",
doi = "10.1016/j.jamcollsurg.2010.10.017",
language = "English (US)",
volume = "212",
pages = "340--348",
journal = "Journal of the American College of Surgeons",
issn = "1072-7515",
publisher = "Elsevier Inc.",
number = "3",

}

TY - JOUR

T1 - A new technique of ex vivo gene delivery of VEGF to wounds using genetically modified skin particles promotes wound angiogenesis

AU - Koyama, Taro

AU - Hackl, Florian

AU - Aflaki, Pejman

AU - Bergmann, Juri

AU - Zuhaili, Baraa

AU - Waisbren, Emily

AU - Govindarajulu, Usha

AU - Yao, Feng

AU - Eriksson, Elof

PY - 2011/3/1

Y1 - 2011/3/1

N2 - Background: Transplantation of genetically modified keratinocytes has been shown to accelerate wound healing. However, this method is labor-intensive and time-consuming. We have developed a new technique of intraoperative gene delivery to wounds that involves transplantation of transfected minced skin particles (MSPs) derived from harvested partial-thickness skin. Study Design: MSPs measuring 0.8 × 0.8 × 0.35 mm were created from a split-thickness skin graft of a pig. In vitro transfection was carried out with adenoviral LacZ (Ad-LacZ) for qualitative and adenoviral vascular endothelial growth factor (Ad-VEGF) for quantitative analysis. Transfected MSPs were transplanted to each of 2.5 × 2.5 cm full-thickness wounds on the dorsum of the pig. Nontransfected MSPs served as controls. Wound chambers were applied and injected with saline to create a wet environment. Results: LacZ expression was detected in migrating cells originating from MSPs both in vitro and in vivo. VEGF expression in the wound fluid of Ad-VEGF-MSP-transplanted wounds on each of days 2 to 4 (mean ± SEM 6.74 ± 1.89 ng/mL, day 2; 9.88 ± 2.27 ng/mL, day 3; 9.87 ± 1.28 ng/mL, day 4) was significantly higher (p < 0.0001) compared with wounds transplanted with either untransfected MSPs, Ad-LacZ-MSPs, or untransplanted controls. In vitro VEGF expression was significantly higher (p < 0.0001) in Ad-VEGF 1 × 1010 transfected MSPs compared with either Ad-VEGF 1 × 109 transfected MSPs or untransfected MSPs. Wounds transplanted with Ad-VEGF-MSPs showed significantly higher (p < 0.0001) numbers of newly formed blood vessels (12.6 ± 0.9 vessels/high power field [HPF]) compared with wounds transplanted with either Ad-LacZ-MSPs (4.4 ± 0.5 vessels/HPF) or untransfected MSPs (5.2 ± 0.7 vessels/HPF). All MSP-transplanted wounds (Ad-VEGF-MSPs, untransfected MSPs, Ad-LacZ-MSPs) showed significantly higher re-epithelialization compared with untransplanted wounds on days 10 and 14 (p < 0.0001). Conclusions: We demonstrated successful transfection of MSPs that can be transplanted to wounds as a source of gene-expressing cells. This technique can be used to deliver growth-modulating genes in wound healing.

AB - Background: Transplantation of genetically modified keratinocytes has been shown to accelerate wound healing. However, this method is labor-intensive and time-consuming. We have developed a new technique of intraoperative gene delivery to wounds that involves transplantation of transfected minced skin particles (MSPs) derived from harvested partial-thickness skin. Study Design: MSPs measuring 0.8 × 0.8 × 0.35 mm were created from a split-thickness skin graft of a pig. In vitro transfection was carried out with adenoviral LacZ (Ad-LacZ) for qualitative and adenoviral vascular endothelial growth factor (Ad-VEGF) for quantitative analysis. Transfected MSPs were transplanted to each of 2.5 × 2.5 cm full-thickness wounds on the dorsum of the pig. Nontransfected MSPs served as controls. Wound chambers were applied and injected with saline to create a wet environment. Results: LacZ expression was detected in migrating cells originating from MSPs both in vitro and in vivo. VEGF expression in the wound fluid of Ad-VEGF-MSP-transplanted wounds on each of days 2 to 4 (mean ± SEM 6.74 ± 1.89 ng/mL, day 2; 9.88 ± 2.27 ng/mL, day 3; 9.87 ± 1.28 ng/mL, day 4) was significantly higher (p < 0.0001) compared with wounds transplanted with either untransfected MSPs, Ad-LacZ-MSPs, or untransplanted controls. In vitro VEGF expression was significantly higher (p < 0.0001) in Ad-VEGF 1 × 1010 transfected MSPs compared with either Ad-VEGF 1 × 109 transfected MSPs or untransfected MSPs. Wounds transplanted with Ad-VEGF-MSPs showed significantly higher (p < 0.0001) numbers of newly formed blood vessels (12.6 ± 0.9 vessels/high power field [HPF]) compared with wounds transplanted with either Ad-LacZ-MSPs (4.4 ± 0.5 vessels/HPF) or untransfected MSPs (5.2 ± 0.7 vessels/HPF). All MSP-transplanted wounds (Ad-VEGF-MSPs, untransfected MSPs, Ad-LacZ-MSPs) showed significantly higher re-epithelialization compared with untransplanted wounds on days 10 and 14 (p < 0.0001). Conclusions: We demonstrated successful transfection of MSPs that can be transplanted to wounds as a source of gene-expressing cells. This technique can be used to deliver growth-modulating genes in wound healing.

UR - http://www.scopus.com/inward/record.url?scp=79952314294&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=79952314294&partnerID=8YFLogxK

U2 - 10.1016/j.jamcollsurg.2010.10.017

DO - 10.1016/j.jamcollsurg.2010.10.017

M3 - Article

C2 - 21247781

AN - SCOPUS:79952314294

VL - 212

SP - 340

EP - 348

JO - Journal of the American College of Surgeons

JF - Journal of the American College of Surgeons

SN - 1072-7515

IS - 3

ER -