TY - JOUR
T1 - A new method for cardiac computed tomography regional function assessment
T2 - Stretch quantifier for endocardial engraved zones (SQUEEZ)
AU - Pourmorteza, Amir
AU - Schuleri, Karl H.
AU - Herzka, Daniel A.
AU - Lardo, Albert C.
AU - McVeigh, Elliot R.
N1 - Copyright:
Copyright 2012 Elsevier B.V., All rights reserved.
PY - 2012/3
Y1 - 2012/3
N2 - Background-Quantitative assessment of regional myocardial function has important diagnostic implications in cardiac disease. Recent advances in CT imaging technology have allowed fine anatomic structures, such as endocardial trabeculae, to be resolved and potentially used as fiducial markers for tracking local wall deformations. We developed a method to detect and track such features on the endocardium to extract a metric that reflects local myocardial contraction. Methods and Results-First-pass CT images and contrast-enhanced cardiovascular magnetic resonance images were acquired in 8 infarcted and 3 healthy pigs. We tracked the left ventricle wall motion by segmenting the blood from myocardium and calculating trajectories of the endocardial features seen on the blood cast. The relative motions of these surface features were used to represent the local contraction of the endocardial surface with a metric we call Stretch Quantifier of Endocardial Engraved Zones (SQUEEZ). The average SQUEEZ value and the rate of change in SQUEEZ were calculated for both infarcted and healthy myocardial regions. SQUEEZ showed a significant difference between infarct and remote regions (P<0.0001). No significant difference was observed between normal myocardium (noninfarcted hearts) and remote regions (P=0.8). Conclusions-We present a new quantitative method for measuring regional cardiac function from high-resolution volumetric CT images, which can be acquired during angiography and myocardial perfusion scans. Quantified measures of regional cardiac mechanics in normal and abnormally contracting regions in infarcted hearts were shown to correspond well with noninfarcted and infarcted regions as detected by delayed enhancement cardiovascular magnetic resonance images.
AB - Background-Quantitative assessment of regional myocardial function has important diagnostic implications in cardiac disease. Recent advances in CT imaging technology have allowed fine anatomic structures, such as endocardial trabeculae, to be resolved and potentially used as fiducial markers for tracking local wall deformations. We developed a method to detect and track such features on the endocardium to extract a metric that reflects local myocardial contraction. Methods and Results-First-pass CT images and contrast-enhanced cardiovascular magnetic resonance images were acquired in 8 infarcted and 3 healthy pigs. We tracked the left ventricle wall motion by segmenting the blood from myocardium and calculating trajectories of the endocardial features seen on the blood cast. The relative motions of these surface features were used to represent the local contraction of the endocardial surface with a metric we call Stretch Quantifier of Endocardial Engraved Zones (SQUEEZ). The average SQUEEZ value and the rate of change in SQUEEZ were calculated for both infarcted and healthy myocardial regions. SQUEEZ showed a significant difference between infarct and remote regions (P<0.0001). No significant difference was observed between normal myocardium (noninfarcted hearts) and remote regions (P=0.8). Conclusions-We present a new quantitative method for measuring regional cardiac function from high-resolution volumetric CT images, which can be acquired during angiography and myocardial perfusion scans. Quantified measures of regional cardiac mechanics in normal and abnormally contracting regions in infarcted hearts were shown to correspond well with noninfarcted and infarcted regions as detected by delayed enhancement cardiovascular magnetic resonance images.
KW - Cardiac imaging techniques
KW - Four-dimensional computed tomography
KW - Ischemic heart disease
KW - Magnetic resonance imaging
KW - Myocardial contraction
KW - Volumetric computed tomography
UR - http://www.scopus.com/inward/record.url?scp=84860815513&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84860815513&partnerID=8YFLogxK
U2 - 10.1161/CIRCIMAGING.111.970061
DO - 10.1161/CIRCIMAGING.111.970061
M3 - Article
C2 - 22342945
AN - SCOPUS:84860815513
VL - 5
SP - 243
EP - 250
JO - Circulation: Cardiovascular Imaging
JF - Circulation: Cardiovascular Imaging
SN - 1941-9651
IS - 2
ER -