A new approach to chemotherapy based on molecular biology and nucleic acid chemistry

Matagen (masking tape for gene expression)

P. S. Miller, P. O P Ts'o

Research output: Contribution to journalArticle

Abstract

The nucleotide sequences of genes contain information which can potentially be used to understand gene function and thus the biological properties of living organisms. This information can also be used to develop innovative new strategies for chemotherapy employing sequence-specific non-ionic oligonucleoside methylphosphonates. These oligonucleotide analogs, termed Matagen (an acronym for masking tape for gene expression), have the following properties: (1) the negatively charged phosphodiester linkage normally found in nucleic acids is replaced with a non-charged methylphosphonate group which confers increased lipophilicity to the oligomer; (2) the oligomers from stable hydrogen-bonded complexes with complementary nucleic acid sequences and retain the fidelity of Watson-Crick base pairing; (3) the lipophilic oligomers cross the cell membrane and also enter various organs of the body; and (4) the methylphosphonate backbone is inherently resistant to nuclease hydrolysis and thus oligomers are taken up intact from cell culture media and remain stable within the cellular environment. Two general strategies are used to block gene expression by Matagens at the mRNA level in mammalian cells. In the first approach, Matagens complementary to specific sites such as the initiation codon region are used to block translation of mRNA. Thus Matagens specifically inhibit translation of rabbit globin mRNA in cell-free systems and rabbit reticulocytes, and vesicular stomatitis virus protein synthesis, but not cellular protein synthesis, in virus-infected cells. In the second approach, Matagens complementary to splice junctions of precursor mRNAs are used to inhibit splicing. For example, a Matagen complementary to the donor splice junction of simian virus 40 (SV 40) large T-antigen mRNA inhibits T-antigen synthesis in SV 40-infected cells, and a Matagen complementary to the acceptor splice junction of herpes simplex virus (HSV) immediate early pre-mRNA 4 + 5 inhibits HSV replication in virus-infected cells. Two new types of Matagen, one derivatized with the photoactivatable cross-linking group psoralen and the other derivatized with a hydroxyl radical-producing group, EDTA-Fe(II), have been designed to improve the efficacy of Matagen and to overcome some of the problems inherent in physical binding of Matagens to complementary nucleic acids. The Matagen approach provides a new way to design antiviral and chemotherapeutic agents in a rational manner. It combines nucleic acid chemistry and chemotherapy to form a common basis for drug development as well as to provide fundamental knowledge about organisms and humans.

Original languageEnglish (US)
Pages (from-to)117-128
Number of pages12
JournalAnti-Cancer Drug Design
Volume2
Issue number2
StatePublished - 1987

Fingerprint

Molecular biology
Chemotherapy
Viruses
Gene expression
Tapes
Nucleic Acids
Molecular Biology
Gene Expression
Drug Therapy
Oligomers
Messenger RNA
Simian virus 40
Viral Tumor Antigens
RNA Precursors
Simplexvirus
Genes
Nucleic acid sequences
Rabbits
Ficusin
Vesicular Stomatitis

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Biochemistry
  • Organic Chemistry
  • Oncology
  • Drug Discovery
  • Pharmacology

Cite this

A new approach to chemotherapy based on molecular biology and nucleic acid chemistry : Matagen (masking tape for gene expression). / Miller, P. S.; Ts'o, P. O P.

In: Anti-Cancer Drug Design, Vol. 2, No. 2, 1987, p. 117-128.

Research output: Contribution to journalArticle

@article{c0cef4e302e5485a8556f7fc32da6b8a,
title = "A new approach to chemotherapy based on molecular biology and nucleic acid chemistry: Matagen (masking tape for gene expression)",
abstract = "The nucleotide sequences of genes contain information which can potentially be used to understand gene function and thus the biological properties of living organisms. This information can also be used to develop innovative new strategies for chemotherapy employing sequence-specific non-ionic oligonucleoside methylphosphonates. These oligonucleotide analogs, termed Matagen (an acronym for masking tape for gene expression), have the following properties: (1) the negatively charged phosphodiester linkage normally found in nucleic acids is replaced with a non-charged methylphosphonate group which confers increased lipophilicity to the oligomer; (2) the oligomers from stable hydrogen-bonded complexes with complementary nucleic acid sequences and retain the fidelity of Watson-Crick base pairing; (3) the lipophilic oligomers cross the cell membrane and also enter various organs of the body; and (4) the methylphosphonate backbone is inherently resistant to nuclease hydrolysis and thus oligomers are taken up intact from cell culture media and remain stable within the cellular environment. Two general strategies are used to block gene expression by Matagens at the mRNA level in mammalian cells. In the first approach, Matagens complementary to specific sites such as the initiation codon region are used to block translation of mRNA. Thus Matagens specifically inhibit translation of rabbit globin mRNA in cell-free systems and rabbit reticulocytes, and vesicular stomatitis virus protein synthesis, but not cellular protein synthesis, in virus-infected cells. In the second approach, Matagens complementary to splice junctions of precursor mRNAs are used to inhibit splicing. For example, a Matagen complementary to the donor splice junction of simian virus 40 (SV 40) large T-antigen mRNA inhibits T-antigen synthesis in SV 40-infected cells, and a Matagen complementary to the acceptor splice junction of herpes simplex virus (HSV) immediate early pre-mRNA 4 + 5 inhibits HSV replication in virus-infected cells. Two new types of Matagen, one derivatized with the photoactivatable cross-linking group psoralen and the other derivatized with a hydroxyl radical-producing group, EDTA-Fe(II), have been designed to improve the efficacy of Matagen and to overcome some of the problems inherent in physical binding of Matagens to complementary nucleic acids. The Matagen approach provides a new way to design antiviral and chemotherapeutic agents in a rational manner. It combines nucleic acid chemistry and chemotherapy to form a common basis for drug development as well as to provide fundamental knowledge about organisms and humans.",
author = "Miller, {P. S.} and Ts'o, {P. O P}",
year = "1987",
language = "English (US)",
volume = "2",
pages = "117--128",
journal = "Anti-Cancer Drug Design",
issn = "0266-9536",
publisher = "Cognizant Communication Corporation",
number = "2",

}

TY - JOUR

T1 - A new approach to chemotherapy based on molecular biology and nucleic acid chemistry

T2 - Matagen (masking tape for gene expression)

AU - Miller, P. S.

AU - Ts'o, P. O P

PY - 1987

Y1 - 1987

N2 - The nucleotide sequences of genes contain information which can potentially be used to understand gene function and thus the biological properties of living organisms. This information can also be used to develop innovative new strategies for chemotherapy employing sequence-specific non-ionic oligonucleoside methylphosphonates. These oligonucleotide analogs, termed Matagen (an acronym for masking tape for gene expression), have the following properties: (1) the negatively charged phosphodiester linkage normally found in nucleic acids is replaced with a non-charged methylphosphonate group which confers increased lipophilicity to the oligomer; (2) the oligomers from stable hydrogen-bonded complexes with complementary nucleic acid sequences and retain the fidelity of Watson-Crick base pairing; (3) the lipophilic oligomers cross the cell membrane and also enter various organs of the body; and (4) the methylphosphonate backbone is inherently resistant to nuclease hydrolysis and thus oligomers are taken up intact from cell culture media and remain stable within the cellular environment. Two general strategies are used to block gene expression by Matagens at the mRNA level in mammalian cells. In the first approach, Matagens complementary to specific sites such as the initiation codon region are used to block translation of mRNA. Thus Matagens specifically inhibit translation of rabbit globin mRNA in cell-free systems and rabbit reticulocytes, and vesicular stomatitis virus protein synthesis, but not cellular protein synthesis, in virus-infected cells. In the second approach, Matagens complementary to splice junctions of precursor mRNAs are used to inhibit splicing. For example, a Matagen complementary to the donor splice junction of simian virus 40 (SV 40) large T-antigen mRNA inhibits T-antigen synthesis in SV 40-infected cells, and a Matagen complementary to the acceptor splice junction of herpes simplex virus (HSV) immediate early pre-mRNA 4 + 5 inhibits HSV replication in virus-infected cells. Two new types of Matagen, one derivatized with the photoactivatable cross-linking group psoralen and the other derivatized with a hydroxyl radical-producing group, EDTA-Fe(II), have been designed to improve the efficacy of Matagen and to overcome some of the problems inherent in physical binding of Matagens to complementary nucleic acids. The Matagen approach provides a new way to design antiviral and chemotherapeutic agents in a rational manner. It combines nucleic acid chemistry and chemotherapy to form a common basis for drug development as well as to provide fundamental knowledge about organisms and humans.

AB - The nucleotide sequences of genes contain information which can potentially be used to understand gene function and thus the biological properties of living organisms. This information can also be used to develop innovative new strategies for chemotherapy employing sequence-specific non-ionic oligonucleoside methylphosphonates. These oligonucleotide analogs, termed Matagen (an acronym for masking tape for gene expression), have the following properties: (1) the negatively charged phosphodiester linkage normally found in nucleic acids is replaced with a non-charged methylphosphonate group which confers increased lipophilicity to the oligomer; (2) the oligomers from stable hydrogen-bonded complexes with complementary nucleic acid sequences and retain the fidelity of Watson-Crick base pairing; (3) the lipophilic oligomers cross the cell membrane and also enter various organs of the body; and (4) the methylphosphonate backbone is inherently resistant to nuclease hydrolysis and thus oligomers are taken up intact from cell culture media and remain stable within the cellular environment. Two general strategies are used to block gene expression by Matagens at the mRNA level in mammalian cells. In the first approach, Matagens complementary to specific sites such as the initiation codon region are used to block translation of mRNA. Thus Matagens specifically inhibit translation of rabbit globin mRNA in cell-free systems and rabbit reticulocytes, and vesicular stomatitis virus protein synthesis, but not cellular protein synthesis, in virus-infected cells. In the second approach, Matagens complementary to splice junctions of precursor mRNAs are used to inhibit splicing. For example, a Matagen complementary to the donor splice junction of simian virus 40 (SV 40) large T-antigen mRNA inhibits T-antigen synthesis in SV 40-infected cells, and a Matagen complementary to the acceptor splice junction of herpes simplex virus (HSV) immediate early pre-mRNA 4 + 5 inhibits HSV replication in virus-infected cells. Two new types of Matagen, one derivatized with the photoactivatable cross-linking group psoralen and the other derivatized with a hydroxyl radical-producing group, EDTA-Fe(II), have been designed to improve the efficacy of Matagen and to overcome some of the problems inherent in physical binding of Matagens to complementary nucleic acids. The Matagen approach provides a new way to design antiviral and chemotherapeutic agents in a rational manner. It combines nucleic acid chemistry and chemotherapy to form a common basis for drug development as well as to provide fundamental knowledge about organisms and humans.

UR - http://www.scopus.com/inward/record.url?scp=0023566958&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0023566958&partnerID=8YFLogxK

M3 - Article

VL - 2

SP - 117

EP - 128

JO - Anti-Cancer Drug Design

JF - Anti-Cancer Drug Design

SN - 0266-9536

IS - 2

ER -