A neural edge-detection model for enhanced auditory sensitivity in modulated noise

Alon Fishbach, Bradford J. May

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

Psychophysical data suggest that temporal modulations of stimulus amplitude envelopes play a prominent role in the perceptual segregation of concurrent sounds. In particular, the detection of an unmodulated signal can be significantly improved by adding amplitude modulation to the spectral envelope of a competing masking noise. This perceptual phenomenon is known as "Comodulation Masking Release" (CMR). Despite the obvious influence of temporal structure on the perception of complex auditory scenes, the physiological mechanisms that contribute to CMR and auditory streaming are not well known. A recent physiological study by Nelken and colleagues has demonstrated an enhanced cortical representation of auditory signals in modulated noise. Our study evaluates these CMR-like response patterns from the perspective of a hypothetical auditory edge-detection neuron. It is shown that this simple neural model for the detection of amplitude transients can reproduce not only the physiological data of Nelken et al., but also, in light of previous results, a variety of physiological and psychoacoustical phenomena that are related to the perceptual segregation of concurrent sounds.

Original languageEnglish (US)
Title of host publicationAdvances in Neural Information Processing Systems 15 - Proceedings of the 2002 Conference, NIPS 2002
PublisherNeural information processing systems foundation
ISBN (Print)0262025507, 9780262025508
StatePublished - Jan 1 2003
Event16th Annual Neural Information Processing Systems Conference, NIPS 2002 - Vancouver, BC, Canada
Duration: Dec 9 2002Dec 14 2002

Publication series

NameAdvances in Neural Information Processing Systems
ISSN (Print)1049-5258

Other

Other16th Annual Neural Information Processing Systems Conference, NIPS 2002
Country/TerritoryCanada
CityVancouver, BC
Period12/9/0212/14/02

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'A neural edge-detection model for enhanced auditory sensitivity in modulated noise'. Together they form a unique fingerprint.

Cite this