A network analysis of the dynamics of seizure

Research output: Chapter in Book/Report/Conference proceedingConference contribution

13 Scopus citations

Abstract

Seizures are events that spread through the brain's network of connections and create pathological activity. To understand what is occurring in the brain during seizure we investigated the time progression of the brain's state from seizure onset to seizure suppression. Knowledge of a seizure's dynamics and the associated spatial structure is important for localizing the seizure foci and determining the optimal location and timing of electrical stimulation to mitigate seizure development. In this study, we analyzed intracranial EEG data recorded in 2 human patients with drug-resistant epilepsy prior to undergoing resection surgery using network analyses. Specifically, we computed a time sequence of connectivity matrices from iEEG (intracranial electroencephalography) recordings that represent network structure over time. For each patient, connectivity between electrodes was measured using the coherence in the band of frequencies with the strongest modulation during seizure. The connectivity matrices' structure was analyzed using an eigen-decomposition. The leading eigenvector was used to estimate each electrode's time dependent centrality (importance to the network's connectivity). The electrode centralities were clustered over the course of each seizure and the cluster centroids were compared across seizures. We found, for each patient, there was a consistent set of centroids that occurred during each seizure. Further, the brain reliably evolved through the same progression of states across multiple seizures including characteristic onset and suppression states.

Original languageEnglish (US)
Title of host publication2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2012
Pages4684-4687
Number of pages4
DOIs
StatePublished - 2012
Event34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2012 - San Diego, CA, United States
Duration: Aug 28 2012Sep 1 2012

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
ISSN (Print)1557-170X

Other

Other34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2012
Country/TerritoryUnited States
CitySan Diego, CA
Period8/28/129/1/12

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint

Dive into the research topics of 'A network analysis of the dynamics of seizure'. Together they form a unique fingerprint.

Cite this