A monoclonal antibody against KCNK9 K+ channel extracellular domain inhibits tumour growth and metastasis

Han Sun, Liqun Luo, Bachchu Lal, Xinrong Ma, Lieping Chen, Christine L. Hann, Amy M. Fulton, Daniel J. Leahy, John Laterra, Min Li

Research output: Contribution to journalArticlepeer-review

30 Scopus citations

Abstract

Two-pore domain potassium (K2P) channels act to maintain cell resting membrane potential - a prerequisite for many biological processes. KCNK9, a member of K2P family, is implicated in cancer, owing to its overexpression in human tumours and its ability to promote neoplastic cell survival and growth. However, KCNK9's underlying contributions to malignancy remain elusive due to the absence of specific modulators. Here we describe the development of monoclonal antibodies against the KCNK9 extracellular domain and their functional effects. We show that one antibody (Y4) with the highest affinity binding induces channel internalization. The addition of Y4 to KCNK9-expressing carcinoma cells reduces cell viability and increases cell death. Systemic administration of Y4 effectively inhibits growth of human lung cancer xenografts and murine breast cancer metastasis in mice. Evidence for Y4-mediated carcinoma cell autonomous and immune-dependent cytotoxicity is presented. Our study reveals that antibody-based KCNK9 targeting is a promising therapeutic strategy in KCNK9-expressing malignancies.

Original languageEnglish (US)
Article number10339
JournalNature communications
Volume7
DOIs
StatePublished - Feb 4 2016

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'A monoclonal antibody against KCNK9 K+ channel extracellular domain inhibits tumour growth and metastasis'. Together they form a unique fingerprint.

Cite this