TY - JOUR
T1 - A method of active case detection to target reservoirs of asymptomatic malaria and gametocyte carriers in a rural area in Southern Province, Zambia
AU - Stresman, Gillian H.
AU - Kamanga, Aniset
AU - Moono, Petros
AU - Hamapumbu, Harry
AU - Mharakurwa, Sungano
AU - Kobayashi, Tamaki
AU - Moss, William J.
AU - Shiff, Clive
N1 - Funding Information:
Grateful thanks are due to the District Medical Directors, Dr. R. Mkandawire (Choma) and Dr. D. Kaile (Namwala) for their support and encouraging the participation of the Rural Health officers. Many thanks are due to Dr. P. Thuma, Managing Director of the Macha Research Trust, for support and advice, to the Johns Hopkins Malaria Research Institute Pilot Grant programme awarded to CJS, for funding, to the Rural Health workers, the staff of the Malaria Institute at Macha for their hard work and dedication, and for the all of the people who participated in our study. Special thanks are also due to Timothy Shields who provided the GIS technical support for this work. Without any of these people, this work would not have been possible.
PY - 2010
Y1 - 2010
N2 - Abstract. Background. Asymptomatic reservoirs of malaria parasites are common yet are difficult to detect, posing a problem for malaria control. If control programmes focus on mosquito control and treatment of symptomatic individuals only, malaria can quickly resurge if interventions are scaled back. Foci of parasite populations must be identified and treated. Therefore, an active case detection system that facilitates detection of asymptomatic parasitaemia and gametocyte carriers was developed and tested in the Macha region in southern Zambia. Methods. Each week, nurses at participating rural health centres (RHC) communicated the number of rapid diagnostic test (RDT) positive malaria cases to a central research team. During the dry season when malaria transmission was lowest, the research team followed up each positive case reported by the RHC by a visit to the homestead. The coordinates of the location were obtained by GPS and all consenting residents completed a questionnaire and were screened for malaria using thick blood film, RDT, nested-PCR, and RT-PCR for asexual and sexual stage parasites. Persons who tested positive by RDT were treated with artemether/lumefantrine (Coartem®). Data were compared with a community-based study of randomly selected households to assess the prevalence of asymptomatic parasitaemia in the same localities in September 2009. Results. In total, 186 and 141 participants residing in 23 case and 24 control homesteads, respectively, were screened. In the case homesteads for which a control population was available (10 of the 23), household members of clinically diagnosed cases had a 8.0% prevalence of malaria using PCR compared to 0.7% PCR positive individuals in the control group (p = 0.006). The case and control groups had a gametocyte prevalence of 2.3% and 0%, respectively but the difference was not significant (p = 0.145). Conclusions. This pilot project showed that active case detection is feasible and can identify reservoirs of asymptomatic infection. A larger sample size, data over multiple low transmission seasons, and in areas with different transmission dynamics are needed to further validate this approach.
AB - Abstract. Background. Asymptomatic reservoirs of malaria parasites are common yet are difficult to detect, posing a problem for malaria control. If control programmes focus on mosquito control and treatment of symptomatic individuals only, malaria can quickly resurge if interventions are scaled back. Foci of parasite populations must be identified and treated. Therefore, an active case detection system that facilitates detection of asymptomatic parasitaemia and gametocyte carriers was developed and tested in the Macha region in southern Zambia. Methods. Each week, nurses at participating rural health centres (RHC) communicated the number of rapid diagnostic test (RDT) positive malaria cases to a central research team. During the dry season when malaria transmission was lowest, the research team followed up each positive case reported by the RHC by a visit to the homestead. The coordinates of the location were obtained by GPS and all consenting residents completed a questionnaire and were screened for malaria using thick blood film, RDT, nested-PCR, and RT-PCR for asexual and sexual stage parasites. Persons who tested positive by RDT were treated with artemether/lumefantrine (Coartem®). Data were compared with a community-based study of randomly selected households to assess the prevalence of asymptomatic parasitaemia in the same localities in September 2009. Results. In total, 186 and 141 participants residing in 23 case and 24 control homesteads, respectively, were screened. In the case homesteads for which a control population was available (10 of the 23), household members of clinically diagnosed cases had a 8.0% prevalence of malaria using PCR compared to 0.7% PCR positive individuals in the control group (p = 0.006). The case and control groups had a gametocyte prevalence of 2.3% and 0%, respectively but the difference was not significant (p = 0.145). Conclusions. This pilot project showed that active case detection is feasible and can identify reservoirs of asymptomatic infection. A larger sample size, data over multiple low transmission seasons, and in areas with different transmission dynamics are needed to further validate this approach.
UR - http://www.scopus.com/inward/record.url?scp=77957265221&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77957265221&partnerID=8YFLogxK
U2 - 10.1186/1475-2875-9-265
DO - 10.1186/1475-2875-9-265
M3 - Article
C2 - 20920328
AN - SCOPUS:77957265221
SN - 1475-2875
VL - 9
JO - Malaria Journal
JF - Malaria Journal
IS - 1
M1 - 265
ER -