A mental fatigue index based on regression using mulitband EEG features with application in simulated driving

Georgios N. Dimitrakopoulos, Ioannis Kakkos, Nitish V. Thakor, Anastasios Bezerianos, Yu Sun

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Development of accurate fatigue level prediction models is of great importance for driving safety. In parallel, a limited number of sensors is a prerequisite for development of applicable wearable devices. Several EEG-based studies so far have performed classification in two or few levels, while others have proposed indices based on power ratios. Here, we utilized a regression Random Forest model in order to provide more accurate continuous fatigue level prediction. In detail, multiband power features were extracted from EEG data recorded from one hour simulated driving task. Next, cross-subject regression was performed to obtain common fatigue-related discriminative features. We achieved satisfactory prediction accuracy and simultaneously we minimized required electrodes, proposing to use a set of 3 electrodes.

Original languageEnglish (US)
Title of host publication2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
Subtitle of host publicationSmarter Technology for a Healthier World, EMBC 2017 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3220-3223
Number of pages4
ISBN (Electronic)9781509028092
DOIs
StatePublished - Sep 13 2017
Externally publishedYes
Event39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2017 - Jeju Island, Korea, Republic of
Duration: Jul 11 2017Jul 15 2017

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
ISSN (Print)1557-170X

Other

Other39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2017
CountryKorea, Republic of
CityJeju Island
Period7/11/177/15/17

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint Dive into the research topics of 'A mental fatigue index based on regression using mulitband EEG features with application in simulated driving'. Together they form a unique fingerprint.

Cite this