A Dirty Dozen: Twelve P-Value Misconceptions

Steven Goodman

Research output: Contribution to journalArticlepeer-review

Abstract

The P value is a measure of statistical evidence that appears in virtually all medical research papers. Its interpretation is made extraordinarily difficult because it is not part of any formal system of statistical inference. As a result, the P value's inferential meaning is widely and often wildly misconstrued, a fact that has been pointed out in innumerable papers and books appearing since at least the 1940s. This commentary reviews a dozen of these common misinterpretations and explains why each is wrong. It also reviews the possible consequences of these improper understandings or representations of its meaning. Finally, it contrasts the P value with its Bayesian counterpart, the Bayes' factor, which has virtually all of the desirable properties of an evidential measure that the P value lacks, most notably interpretability. The most serious consequence of this array of P-value misconceptions is the false belief that the probability of a conclusion being in error can be calculated from the data in a single experiment without reference to external evidence or the plausibility of the underlying mechanism.

Original languageEnglish (US)
Pages (from-to)135-140
Number of pages6
JournalSeminars in Hematology
Volume45
Issue number3
DOIs
StatePublished - Jul 2008

ASJC Scopus subject areas

  • Hematology

Fingerprint Dive into the research topics of 'A Dirty Dozen: Twelve P-Value Misconceptions'. Together they form a unique fingerprint.

Cite this