A Conserved Role for Serotonergic Neurotransmission in Mediating Social Behavior in Octopus

Eric Edsinger, Gül Dölen

Research output: Contribution to journalArticlepeer-review

Abstract

Human and octopus lineages are separated by over 500 million years of evolution [1, 2] and show divergent anatomical patterns of brain organization [3, 4]. Despite these differences, growing evidence suggests that ancient neurotransmitter systems are shared across vertebrate and invertebrate species and in many cases enable overlapping functions [5]. Sociality is widespread across the animal kingdom, with numerous examples in both invertebrate (e.g., bees, ants, termites, and shrimps) and vertebrate (e.g., fishes, birds, rodents, and primates) lineages [6]. Serotonin is an evolutionarily ancient molecule [7] that has been implicated in regulating both invertebrate [8] and vertebrate [9] social behaviors, raising the possibility that this neurotransmitter's prosocial functions may be conserved across evolution. Members of the order Octopoda are predominantly asocial and solitary [10]. Although at this time it is unknown whether serotonergic signaling systems are functionally conserved in octopuses, ethological studies indicate that agonistic behaviors are suspended during mating [11–13], suggesting that neural mechanisms subserving social behaviors exist in octopuses but are suppressed outside the reproductive period. Here we provide evidence that, as in humans, the phenethylamine (+/−)-3,4-methylendioxymethamphetamine (MDMA) enhances acute prosocial behaviors in Octopus bimaculoides. This finding is paralleled by the evolutionary conservation of the serotonin transporter (SERT, encoded by the Slc6A4 gene) binding site of MDMA in the O. bimaculoides genome. Taken together, these data provide evidence that the neural mechanisms subserving social behaviors exist in O. bimaculoides and indicate that the role of serotonergic neurotransmission in regulating social behaviors is evolutionarily conserved. Edsinger and Dölen identify clear octopus orthologs of the human serotonin transporter gene, SLC6A4. This finding is paralleled by conservation of the SLC6A4 binding site and acute prosocial functions of MDMA in octopuses. These data provide evidence for the evolutionary conservation of serotonergic signaling in the regulation of social behaviors.

Original languageEnglish (US)
Pages (from-to)3136-3142.e4
JournalCurrent Biology
Volume28
Issue number19
DOIs
StatePublished - Oct 8 2018

Keywords

  • (+/−)-3,4-methylenedioxymethamphetamine
  • 5-HT
  • MDMA
  • SERT
  • SLC6A4
  • evolution
  • octopus
  • phenethylamine
  • serotonin
  • social

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)

Fingerprint Dive into the research topics of 'A Conserved Role for Serotonergic Neurotransmission in Mediating Social Behavior in Octopus'. Together they form a unique fingerprint.

Cite this